
EZ LADDER
P-Series Standard Edition

TOOLKIT

USER MANUAL

© Divelbiss Corporation. 2004-2023

Version 1.14 for
EZ LADDER Version

1.2.5.8

Programming Manual for all P-Series PLC on a ChipTM Based Products

Table of Contents

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 2

Table of Contents

Chapter 1 - Getting Started ...8
What’s added or changed in this Manual / Software Version .. 9
How to Use this Manual ... 10
Installing the EZ LADDER Toolkit from CD ... 11
Installing the EZ LADDER Toolkit from USB ... 13
Downloading and Installing EZ LADDER Toolkit .. 15
Requesting a Serial Number / CID Code .. 18
Activating the EZ LADDER Toolkit ... 19
Installing Additional Copies of EZ LADDER Toolkit ... 21

Chapter 2 - Navigating EZ LADDER Toolkit ..22
EZ LADDER Toolkit Overview ... 23
EZ LADDER Toolkit Menus ... 24
EZ LADDER Toolkit Tool Bars and Tool Bar Buttons ... 28
Cross Reference Window Pane .. 31
Output Window Pane ... 32
Opening Existing Ladder Diagram Project Files... 32

Chapter 3 - Ladder Diagram Basics ...33
Relay Logic vs Ladder Diagram ... 34
Basic Ladder Diagram Symbols ... 35
Power Rails and Links ... 36
Connection Types .. 37
Understanding Ladder Diagram Functionality .. 38

Chapter 4 - Configuring Targets ...39
Understanding Targets .. 40
The Project Settings Window ... 40
Selecting the Hardware Target ... 43
Viewing Target Information ... 44
Updating / Installing Target Kernels .. 45
Recovering Communications ... 46
Target Utilities .. 48
Bootloader Target Options & Configurations ... 49
Installing Target Devices / Features ... 50

Chapter 5 - Creating Ladder Diagram Projects...55
Creating Ladder Diagram Projects ... 56
Understanding Objects & Variables ... 56
Creating and Placing Variables .. 58
Variable Types .. 59
Variable Attributes ... 60
Keeping Variable Values on Power Loss ... 63
Placing Objects and Drawing Links ... 63

Table of Contents

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 3

Using Copy and Paste ... 65
Inserting and Deleting Rungs ... 66
Saving EZ LADDER Toolkit Projects .. 66
Verifying and Compiling Ladder Diagrams ... 67
Bit Addressable Variables ... 68

Chapter 6 - Downloading and Running Projects ..70
Switching Modes in EZ LADDER Toolkit ... 71
Monitor Mode Overview .. 72
Connecting to a Target .. 73
Connecting for the First Time to a New Target ... 75
Downloading Ladder Diagram Projects to Targets ... 76
Real-Time Features .. 76

Chapter 7 - Retentive Variables ..79
What is a Retentive Variable ... 80
How to Make a Variable Retentive .. 80
Retentive Variable / Memory Limitations ... 81
Configuring Retentive Memory in the Project Settings .. 82
EEPROM Memory Overview.. 83
Installing EEPROM Functionality ... 84
Using EEPROM Memory .. 85
FRAM used as EEPROM .. 86

Chapter 8 - Pulse Width Modulation ..87
What is Pulse Width Modulation .. 88
PWM Output Basics ... 88
Configuring PWM in Project Settings .. 89
Controlling PWM in the Ladder Diagram Project .. 90

Chapter 9 - LCD Display Support ...92
Character (CHR) LCD Display Functionality ... 93
Configuring the CHR LCD Display in the Project Settings .. 93
Displaying Messages on the CHR LCD Display .. 94
Graphics (GFX) LCD Display Functionality ... 97
Configuring the GFX LCD Display in the Project Settings ... 98
Displaying Items on the GFX LCD Display .. 99

Chapter 10 - Keypad Support ...102
Keypad Functionality ... 103
Configuring the Keypad in the Project Settings ... 103
Getting Data from the Keypad .. 104

Chapter 11 - UARTS and Serial Ports ..108
UARTS & Serial Ports .. 109
Serial Print Functionality ... 111

Table of Contents

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 4

Installing / Configuring the Serial Print Device ... 111
Printing Data to a Serial Device using a Serial Port ... 114

Chapter 12 - Real Time Clock ...116
Installing the Real Time Clock .. 117
Using the Real Time Clock .. 118
Real Time Clock Sync with SNTP ... 123

Chapter 13 - Modbus Networking ..126
Modbus Overview .. 127
Installing the Modbus Master ... 127
Using the Modbus Master ... 129
Modbus Slave (UART) ... 135
Modbus TCP over Ethernet / WiFi .. 140
Modbus using Multiple Ports .. 143

Chapter 14 - CAN Networking ..144
What is CAN? ... 145
Installing CAN Network Ports ... 145
Divelbiss OptiCAN Network .. 147
J1939 Networking / NMEA 2000 .. 165
Native CAN Communications ... 180

Chapter 15 - SPI Devices and Support ..182
SPI Bus Devices ... 183
Installing an SPI Bus ... 183
Installing Supported SPI Bus Devices ... 185

Chapter 16 - I2C Devices ...217
I2C Overview ... 218
Installing an I2C Bus in EZ LADDER .. 218
I2C Custom Device Communications ... 220

Chapter 17 - Analog I/O ...222
Analog Inputs ... 223
Analog Outputs .. 228

Chapter 18 - Counters & Timers ...231
Counter - Timer Capture Inputs .. 232
Installing Counter - Capture Inputs .. 232
Quadrature Counter Inputs ... 235
Installing Quadrature Counter Inputs .. 235
Using the Quadrature Counter Inputs .. 237

Table of Contents

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 5

Chapter 19 - Ethernet & Wi-Fi ...239
Ethernet Overview ... 240
Ethernet Physical Port (Layer) Support ... 240
Installing Ethernet Support ... 240
Wi-Fi Overview ... 243
Installing Wi-Fi Support ... 244
Ethernet / Wi-Fi as the Programming Port ... 247
Ethernet / Wi-Fi Connectivity as Modbus Port .. 248
Connecting to a Wi-Fi Network (Client Mode) ... 250
Configuring and Using Wi-Fi (Host Mode) ... 252
Structured Text Wi-Fi / Ethernet Control ... 254

Chapter 20 - SD Card Support ..256
SD Card Support .. 257
Installing SD Card Support ... 257
Using the SD Card ... 259
SD Card File Operations / Data Logging .. 260
File Transfer Tool ... 261

Chapter 21 - EZ LADDER Toolkit Reports ...263
EZ LADDER Toolkit Reports ... 264

Chapter 22 - Troubleshooting ...267
Error Messages .. 268
Structured Text Errors ... 271
Common Ladder Diagram Errors ... 272

Chapter 23 - Hardware Targets ...274
P-Series PLC on a ChipTM Integrated Circuits ... 276
HEC-P6xxx Series .. 279
HEC-P5xxx Series .. 286
HEC-P2xxx Series .. 293
HEC Gateway Series .. 297
VB-2xxx Series ... 302
P-Series Bear Bones Controllers ... 307
VersaGateway Programmable Communications Gateways .. 312

Chapter 24 - Webserver ..321
Webserver Overview .. 322
Webserver Resource Addressing... 322
IP Addressing, Wi-Fi and Ethernet ... 323
Installing the Webserver in the Ladder Diagram Project ... 324
The Ladder Diagram WEBSERVER_DATA Function Block .. 326
The WEBSERVER EZData API ... 328
Requesting, Sending & Displaying Data ... 329

Table of Contents

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 6

Chapter 25 - Password Protection ...334
Password Protection Overview .. 335
Configuring Password Protection .. 335

Chapter 26 - Structured Text ..339
Structured Text Overview .. 341
Structured Text Technical Support .. 341
Structured Text Introduction ... 341
Structured Text Variables .. 342
Structured Text Language ... 344
Structured Text Function Blocks .. 350
Target Specific ST Functions .. 352
EZ LADDER Structured Text Editor .. 353
User-Defined Functions & Function Blocks .. 355
Copying / Pasting ST Functions & Function Blocks ... 357
Exporting / Importing ST Functions & Function Blocks ... 359
Viewing Structured Text Variables in Run Mode .. 362

Chapter 27 - Cellular Connectivity ...364
Cellular Data Modem (CDM) Overview ... 365
CDM Installation - Project Settings .. 365
Cellular Data Modem (CDM) Activation ... 365
Controlling the Cellular Data Modem ... 366
The Cellular Data Modem and VersaCloud M2M+IoT ... 371

Chapter 28 - VersaCloud M2M+IoT Communications ..372
VersaCloud M2M+IoT Communications Overview ... 373
Communications using Ladder Diagram ... 374
VersaCloud M2M+IoT using Structured Text ... 383

Chapter 29 - GPS Support ..384
GPS Overview .. 385
GPS Installation ... 385
Using GPS .. 386

Chapter 30 - DCCoAP Communications ..387
DCCoAP Communications Overview ... 388
Communications using Ladder Diagram ... 388
DCCoAP Communications to Cloud Solutions ... 394

Appendix A - Function Reference ..396
Object and Function Block Basics ... 399

Appendix B - Target Specific ST Function Reference ..533
Target Specific Functions ... 536

Table of Contents

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 7

Appendix C - Standard ST Function Reference ..739
Standard ST Functions .. 745

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 8

CHAPTER 1
Getting Started

This chapter provides detailed information for getting started using the P-Series EZ LAD-
DER Toolkit. Included in this section are installation instructions, activating EZ LADDER
Toolkit and instructions on how information in this manual is presented.

Chapter Contents
What’s added or changed in this Manual / Software Version9

How to Use this Manual ..10

Installing the EZ LADDER Toolkit from CD ...11

Installing the EZ LADDER Toolkit from USB ...13

Downloading and Installing EZ LADDER Toolkit15

Requesting a Serial Number / CID Code ...18

Activating the EZ LADDER Toolkit ...19

Installing Additional Copies of EZ LADDER Toolkit21

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 9

What’s added or changed in this Manual / Software Version
This manual is for P-Series EZ LADDER Toolkit (EZ LADDER for the P-Series PLC on a ChipTM based
product line). For M-Series based PLC on a ChipTM products, refer to the M-Series EZ LADDER Toolkit User
Manual.

EZ LADDER Software Changes (V1.2.5.8)

• Added new Azure Root Certificate for MQTT - now allows for more than one root certificate.

• Added timeout for MQTT connect message - Now disconnects on timeout.

• Added optional enable / disable option for TLS with MQT. MQTT TLS memory is only reserved when enabled.

• Changed Structured Text LIMIT function number of inputs require to 3

• Corrected MQTT / SD Card / Watchdog Timer issues (PLCHIP kernel).

The following are changes since the last published manual.

EZ LADDER Manual Corrections / Additions

• Chapter 28 - Use TLS checkbox details added..

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 10

How to Use this Manual
In this manual, the following conventions are used to distinguish elements of text:

 BOLD Denotes labeling, commands, and literal portions of syntax that must appear
 exactly as shown.

 Italic Used for variables and placeholders that represent the type of text
 to be entered by the user.

 small caps Used to show key sequences or actual buttons, such as OK, where the user
 clicks the OK button.

In addition, the following symbols appear periodically appear in the left margin to call the readers attention to
specific details in the text:

 Warns the reader of a potential danger or hazard that is associated with
 certain actions.

 Appears when the text contains a tip that is especially helpful.

 Indicates that the text contains information to which the reader should
 pay particularly close attention.

This manual is divided into Chapters that are organized to promote a step by step progression of using the
EZ LADDER Toolkit from installation to troubleshooting. Each chapter contains specific information that is
relevant to understanding how to use the EZ LADDER Toolkit.

 EZ LADDER Toolkit is now available as two separate programs (one for the M-Series PLC on a
 Chip™ based targets and one for the P-Series PLC on a ChipTM based targets). This manual is for
 the P-Series based targets and their supported features in relation to programming and EZ LADDER
 Toolkit. For M-Series based targets, the M-Series EZ LADDER Toolkit User Manual should be used.
 Only the correct manual for the hardware based (P-Series or M-Series) should be used as there are
 distinct differences in configuring targets and features and functions supported between the two.

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 11

Installing the EZ LADDER Toolkit from CD
This section of instruction is for installing EZ LADDER Toolkit from CD. If your EZ LADDER Toolkit was pro-
vided on USB, refer to the Installing the EZ LADDER Toolkit from USB section. EZ LADDER Toolkit may
also be downloaded and installed, refer to that section of the manual for more details. To install EZ LADDER
Toolkit on your computer, follow the following steps. Once EZ LADDER Toolkit is installed, it must be acti-
vated before it may be used with actual hardware targets.

 EZ LADDER Toolkit supports Windows XP, Vista, Vista 64-bit, Windows 7, Windows 7 64-bit,
 Windows 8 and Windows 10. Windows 2000 and earlier versions are not supported.

 Windows Administrator Rights are required for proper installation. The EZ LADDER directory
 security is dependent on local / network security settings and may be set for user Read/Execute
 only. To allow the user to be able to write to this directory, an Administrator must change the
 permissions accordingly.

 Windows Administrator Rights are required to install / register / activate EZ LADDER. Installing
 EZ LADDER Toolkit without Administrator Permissions will cause EZ LADDER Toolkit not install
 and not operate correctly.

1. Copy the Serial Number printed on the face of the
 EZ LADDER Toolkit CD to a piece of paper. You will
 need this serial number during installation.

2. Insert the EZ LADDER Toolkit CD into your CD
 drive. If you have Active Content Enabled for your
 CD Drive, a Menu will appear. Click the
 install p-series ez ladder standard edition v x.x.x.x to run
 the EZ LADDER Toolkit setup.

 If this screen does not appear. Click the start button
 and choose run. Browse to the USB Drive, then
 double-click start.exe.

 You will be prompted with a warning.
 Select RUN.

3. The EZ LADDER Toolkit Installation Wizard will open.
 Click next.

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 12

4. Complete the Name, Organization fields and
 enter the Serial Number. Do not click
 the select license xml button. This button should
 only be used under Divelbiss personnel supervision.
 Click next.

 The serial number entered is used during
 activation. If the serial number is not correct,
 you will not be able to activate your
 EZ LADDER Toolkit later.

5. Use the default location for installing the EZ LADDER
 Toolkit or browse and select a different location.
 Click next.

6. All the information is gathered. Click install to
 install the EZ LADDER Toolkit. The EZ LADDER
 installer will copy all the required files and create a
 shortcut.

7. When installation is complete, click finish.

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 13

Installing the EZ LADDER Toolkit from USB

This section of instruction is for installing EZ LADDER Toolkit from USB. If your EZ LADDER Toolkit was
provided on CD, refer to the Installing the EZ LADDER Toolkit from CD section. EZ LADDER Toolkit may
also be downloaded and installed, refer to that section of the manual for more details. To install EZ LADDER
Toolkit on your computer, follow the following steps. Once EZ LADDER Toolkit is installed, it must be acti-
vated before it may be used with actual hardware targets.

 EZ LADDER Toolkit supports Windows XP, Vista, Vista 64-bit, Windows 7, Windows 7 64-bit,
 Windows 8 and Windows 10. Windows 2000 and earlier versions are not supported.

 Windows Administrator Rights are required for proper installation. The EZ LADDER directory
 security is dependent on local / network security settings and may be set for user Read/Execute
 only. To allow the user to be able to write to this directory, an Administrator must change the
 permissions accordingly.

 Windows Administrator Rights are required to install / register / activate EZ LADDER. Installing
 EZ LADDER Toolkit without Administrator Permissions will cause EZ LADDER Toolkit not install
 and not operate correctly.

1. Insert the EZ LADDER Toolkit USB into a USB port
 on your computer.

2. An ‘Autoplay’ dialog should appear. Select the
 Open folder to view files option.

 Double-click start.html

 If this screen does not appear. Click the start button
 and choose run. Browse to the USB Drive, then
 double-click start.html.

 You can also choose to skip the menu and browse
 directly to the EZ LADDER directory , then Vx.x.x.x
 and find the P-Series EZ Ladder Toolkit Setup.exe.

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 14

3. The menu will appear. Click the
 install p-series ez ladder standard edition v x.x.x.x to run
 the EZ LADDER Toolkit setup.

 You will be prompted with a warning.
 Select RUN.

4. The EZ LADDER Toolkit Installation Wizard will open.
 Click next.

5. Complete the Name and Organization fields. The
 Serial Number is automatically read from the USB
 drive. Do not click the select license xml button. This button
 should only be used under Divelbiss personnel
 supervision. Click next.

6. Use the default location for installing the EZ LADDER
 Toolkit or browse and select a different location.
 Click next.

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 15

7. All the information is gathered. Click install to
 install the EZ LADDER Toolkit. The EZ LADDER
 installer will copy all the required files and create a
 shortcut.

8. When installation is complete, click finish.

Downloading and Installing EZ LADDER Toolkit
This section of instruction is for downloading installing EZ LADDER Toolkit from from www.divelbiss.com. If
your EZ LADDER Toolkit was provided on USB, refer to the Installing the EZ LADDER Toolkit from USB
section. If your EZ LADDER Toolkit was provided on CD, refer to the Installing the EZ LADDER Toolkit
from CD section.

To download and install EZ LADDER Toolkit on your computer, follow the following steps. Once EZ LAD-
DER Toolkit is installed, it must be activated before it may be used with actual hardware targets.

 EZ LADDER Toolkit supports Windows XP, Vista, Vista 64-bit, Windows 7, Windows 7 64-bit,
 Windows 8 and Windows 10. Windows 2000 and earlier versions are not supported.

 Windows Administrator Rights are required for proper installation. The EZ LADDER directory
 security is dependent on local / network security settings and may be set for user Read/Execute
 only. To allow the user to be able to write to this directory, an Administrator must change the
 permissions accordingly.

 Windows Administrator Rights are required to install / register / activate EZ LADDER. Installing
 EZ LADDER Toolkit without Administrator Permissions will cause EZ LADDER Toolkit not install
 and not operate correctly.

1. Go to https://www.divelbiss.com. From the menu, select
 Support and from the support drop-down, select
 EZ Ladder Downloads. The EZ LADDER downloads
 page will open with a list of versions available to download.

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 16

2. Choose the proper EZ LADDER version to
 download and click on the Filename for the
 version (column on the left). The file should
 begin the download. Depending on the browser
 there may be additional dialog boxes. The
 download may take several minutes.

 The file downloaded is an executable (.exe) file.

 An EZ LADDER Toolkit Serial Number is required during the installation process. A CID code is
 required during the activation process. The Serial Number and CID codes are needed prior to
 proceeding. Refer to the Requesting a Serial Number / CID Code section of this chapter for more
 details.

3. Click (or double-click) on the downloaded file
 to run the installer. Microsoft Defender will
 open a warning dialog. This is normal for an
 executable file.

4. Click the More Info link in the dialog. The
 dialog will update with more details on the
 file and publisher. It will also display a new
 button - run anyway.

5. Click the run anyway button. This will allow
 the actual installer to run.

←

←

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 17

6. Based on your computer settings, you may
 see the Window's User Account Control dialog
 appear. Click yes to continue the installation.

7. The EZ LADDER Toolkit Installation Wizard will open.
 Click next.

8. Complete the Name, Organization and Serial Number
 fields. Do not click the select license xml button. This button
 should only be used under Divelbiss personnel
 supervision. Click next.

9. Use the default location for installing the EZ LADDER
 Toolkit or browse and select a different location.
 Click next.

10. All the information is gathered. Click install to
 install the EZ LADDER Toolkit. The EZ LADDER
 installer will copy all the required files and create a
 shortcut.

11. When installation is complete, click finish.

←

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 18

Requesting a Serial Number / CID Code
This section of instruction is for requesting an EZ LADDER Toolkit Serial Number (required during installa-
tion) and CID code (required during activation). For new users downloading EZ LADDER Toolkit (no previ-
ous EZ LADDER from CD or USB), a request form is provided on our website.

1. Go to https://www.divelbiss.com.
 From the menu, select Support
 and from the support drop-down,
 select EZ Ladder Downloads.
 There is a link or the page to the
 request form. You can also go
 directly to https://divelbiss.com/EZSN.php.

2. Complete the form fields and submit it.

3. The system will e-mail the Serial Number and CID code to the e-mail address provided during the form
 submission.

 Please record the Serial Number and CID code for future installations / re-installation of your EZ
 LADDER Toolkit.

←

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 19

Activating the EZ LADDER Toolkit

 Until EZ LADDER Toolkit is activated, it will only operated in DEMO mode which does not allow
 connecting to actual hardware targets (controllers) or downloading programs.

Now that the EZ LADDER Toolkit is installed, it must be activated to enable all the features. You will need
the following to activate your EZ LADDER Toolkit.

 1. An internet connection and web browser like Internet Explorer.

 2. CD installations: Your EZ LADDER Toolkit CD Case. You will need your CID Code located on the
 back of the case if you installed from CD.

 If you installed using USB, the CID code is located on a label on the bag that contained the USB
 Flash drive.

 3. EZ LADDER Toolkit installed.

Once activated, EZ LADDER Toolkit is fully functional and will operate with hardware targets. The process of
registering and activating is completing the on-line registration form receiving a counter key. This key must
be loaded into EZ LADDER Toolkit and when loaded, it will activate your copy of EZ LADDER Toolkit.

If EZ Ladder is not registered, it will prompt you to do so when the application is started.

To activate and register your EZ LADDER Toolkit, follow the installation wizard as follows:

1. When prompted to Activate EZ LADDER, click yes.

2. You must read and agree to the license agreement
 to activate the EZ LADDER Toolkit. Click the I agree
 box and click next.

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 20

2. Click the link provided. A web browser window will
 open to the registration and activation page on
 Divelbiss.com.

 You will need the Activation key provided by
 EZ LADDER and your CID Code # located on the
 back of your EZ LADDER Toolkit CD case (if installed
 using CD) or on a label on the bag the USB Flash drive
 was packaged in (if installed using USB).

 If you do not have your CID Code #, you must
 obtain it prior to continuing the activation.
 Contact Divelbiss Customer Support.

 If you close EZ LADDER prior to completing activation, the original Activation Key cannot be
 used. A new Activation Key must be used to activate the EZ LADDER Toolkit.

3. Click on the link provided to open the browser and
 go to the Activation Page. Copy / Paste or type your
 Activation key into the Activation key form box on the
 web site Activation and Registration page, if not already
 pre-loaded (Internet Explorer will preload this for you).

4. Complete all other form entries. All information must
 be completed. The CID Code# is found on the
 EZ LADDER Toolkit’s CD Case (located on back side).

 For USB installations, the CID code should be
 read automatically and sent to the activation form (It
 can be found on a label on the bag the USB Flash drive
 was packaged in.

5. Click the register & get key button. The Activation key
 and other information will be confirmed and if valid,
 a Counter Key, Username and Password will be
 displayed. Save the Username and Password as
 they can be used to download updates to EZ LADDER
 Toolkit.

6. Copy / Paste or type the Counter Key into the
 Counter Key form box in the EZ LADDER Toolkit
 Activation Window. Click proceed.

7. A Dialog box will appear verifying that EZ LADDER
 has successfully been activated.

If the information is not valid, the registration
will fail. Activation can fail due to an incorrect
Serial Number, incorrect CID Code#, copying
the Activation or Counter key incorrectly or if
this serial number has been registered more
times than allowed per the license agreement
(typically 2 times). Check this information. If
you are still unable to activate EZ LADDER
Toolkit, Contact Divelbiss Customer Support.

Chapter 1 Getting Started

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 21

Installing Additional Copies of EZ LADDER Toolkit

The standard EZ LADDER Toolkit license agreement allows the EZ LADDER Toolkit to be installed on up to
two computers (usually a PC and a laptop). To install on a second computer, install the EZ LADDER Toolkit
and Activate it as was done on the original computer.

 If you attempt to activate a serial more than two time (unless you have purchased a site license),
 the activation will fail as the serial number has been activated the maximum number of allowed
 times.

 If you are re-installing due to a hardware failure or moving computers, Contact Divelbiss
 Customer Support to allow additional activations.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 22

CHAPTER 2
Navigating EZ LADDER Toolkit

This chapter provides detailed information on the basics of navigating and using the EZ
LADDER Toolkit’s workspace, menus, tool bars and windows.

Chapter Contents
EZ LADDER Toolkit Overview ..23

EZ LADDER Toolkit Menus ...24
FILE MENU ...24
EDIT MENU ...25
VIEW MENU ..26
PROJECT MENU ..27
REPORTS MENU ...27
WINDOW MENU ...28
HELP MENU ...28

EZ LADDER Toolkit Tool Bars and Tool Bar Buttons28

Cross Reference Window Pane ..31

Output Window Pane ..32

Opening Existing Ladder Diagram Project Files32

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 23

EZ LADDER Toolkit Overview
When the EZ LADDER Toolkit is started, it will open in the Edit Mode. This mode is where ladder diagram
projects are created, functions are inserted and variables are placed. When actually downloading ladder
diagram projects to targets or monitoring ladder diagram operation on hardware targets, it is referred to as
Run Mode. The Run Mode is explained in Chapter 6 - Downloading and Running Projects.

Figure 2-1 identifies the components that are part of the Edit Mode.

 1. Project Filename: The name of the currently viewed project will be displayed in this
 position.

 2. Menus: Drop-down menus for programming features and options.

 3. Cross Reference: Quick Click Cross References for functions, objects and variables.

 4. Tool Bars: Tool bars for placing functions, objects and drop-down function lists.

 5. Ladder Workspace: Area where the ladder diagram is drawn.

 6. Output Window: This is where status messages are displayed when Verifying or
 Compiling ladder diagram programs.

Figure 2-1

1

2

3

4

5

6

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 24

EZ LADDER Toolkit Menus

The EZ LADDER Toolkit has many features and options. Basic commands, features and options are used
and controlled through drop down menus. Figure 2-2 shows the standard EZ LADDER Toolkit Menu bar. As
with any Windows based application, clicking on a menu heading will cause the drop down menu to open.

The menus found in the EZ LADDER Toolkit are: File, Edit, View, Project, Reports, Window and Help. Some
of these menus are specific to EZ LADDER Toolkit features while others are part of the basic Windows struc-
ture.

FILE MENU

The FILE Menu includes the standard windows functionality for file control and printing. The FILE Menu
items are: New, Open, Close, Save, Save As, Print, Print Preview, Print Setup and Exit. A recently opened
file list is also included for quick recall of recently opened ladder diagram projects.

 New
 The New menu item is used to create a new, blank EZ LADDER Toolkit Ladder Diagram Project.

 Open
 The Open menu item is select and open a previously saved EZ LADDER Toolkit Ladder Diagram
 Project.

 Close
 The Close menu item closes the currently selected EZ LADDER Toolkit Ladder Diagram Project.

 Save
 The Save menu item is used to save the currently selected EZ LADDER Toolkit Ladder Diagram
 Project. If the project has not been saved previously, the Save As dialog is displayed.

 Save As
 The Save As menu item is used to save the currently selected EZ LADDER Toolkit Ladder Diagram
 Project under a new name.

 Print
 Opens the Print dialog box for printing the currently selected EZ LADDER Toolkit Ladder Diagram
 Project with the settings defined in the Print Setup menu.

 Print Preview
 Opens a window to view the ladder diagram project as it is to be printed.

Figure 2-2

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 25

 Print Setup
 Opens a window to configure print and printer settings.

 Exit
 Closes all currently opened ladder diagram projects and closes the EZ LADDER Toolkit application
 program.

EDIT MENU

The EDIT Menu includes the standard windows functionality for editing and editing preferences. The EDIT
Menu items are: Undo, Redo, Cut, Copy, Paste, Select All, Settings.

 Undo
 The Undo will cause the last action performed to be undone.

 Redo
 The Redo will cause an action that was undone using the Undo, to be repeated or completed again.

 Cut
 The Cut menu is disabled in the EZ LADDER Toolkit. To delete an object or multiple objects, select
 the object(s) using the selector tool and remove by press the delete key.

 Copy
 The Copy is disabled in the EZ LADDER Toolkit. To copy an object or multiple objects, select
 the object(s) using the selector tool, right click the mouse and select copy. This will copy all the
 selected objects to the Windows clipboard.

 Paste
 The Paste menu item is disabled in the EZ LADDER Toolkit. To paste an object or multiple objects,
 position the mouse at the starting point to paste, right click the mouse and select paste. This will
 paste the Windows clipboard contents into the ladder diagram project.

 When pasting objects and rungs, enough space must be available at the pasting point for the
 Windows clipboard contents. The paste will not complete unless sufficient space is provided (# of
 rungs and space on each rung).

 Select All
 The Select All menu item is disabled in the EZ LADDER Toolkit.

 Settings
 The Settings menu item opens the LD (ladder diagram) settings window. This window allows general
 setting to be configured such as displaying grid, fonts, etc. Typically, it is recommended to leave the
 settings at the factory defaults.

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 26

VIEW MENU

The VIEW Menu is used to view currently selected target information and to view or hide tool bars and op-
tional windows.

 Target Information
 The target information window provides details of the selected hardware target (selected in the
 Projects Settings menu) including target name, minimum kernel version required for this version of
 EZ LADDER Toolkit, Supported Objects and Functions, Analog I/O and Digital I/O. The target
 information may be printed using the provided print button.

 Basic Components
 The Basic Components menu item will cause the basic components tool bar to be visible or hidden.
 This tool bar includes buttons for the direct contact, inverted contact, direct coil, inverted coil, CTU,
 CTD, CTUD, TP, TON and TOF functions.

 Cross References
 The Cross References menu item will cause the Cross Reference Window to be visible or hidden.

 Edit Tools
 The Edit Tools menu item will cause the edit tools tool bar to be visible or hidden. This tool bar
 includes buttons for select, horizontal link, vertical link, Edit Vars, Inst Vars, Verify, Compile (C),
 MON and text boxes (Abc..).

 Monitor Status
 The Monitor Status menu item will cause the monitor status tool bar to be visible or hidden (in
 monitor mode only). This tool bar is used to view actual target information (name, build, scan
 time, etc) when monitoring a program in the monitor mode.

 Monitor Tools
 The Monitor Tools menu item will cause the monitor tools tool bar to be visible or hidden (monitor
 mode only). This tool bar is used to select monitoring tools when monitoring a program in the
 monitor mode.

 Function List
 The Function List menu item will cause the drop down function list to be visible or hidden. This tool
 bar is used to select and insert functions into the ladder diagram project.

 Output
 The Output menu item will cause the Output Window to be visible or hidden. This window displays
 important messages during the Verify and Compile Operations.

 During the Compile process, it is important to have this window visible. Information including compile
 status and errors are displayed here.

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 27

 Toolbar
 The Toolbar menu item will cause the standard windows functions toolbar to be visible or hidden.
 This tool bar includes, New, Open, Save, Cut, Print and more.

PROJECT MENU

The PROJECT Menu is used to view and configure Project target settings including hardware target selec-
tions, and installing and configuring optional target features.

 Settings
 The Settings menu item opens the Project Settings Dialog. This dialog is used to configure the
 actual hardware target (controller) and its features. The target is selected from the available list.
 Depending upon the target selected, additional configuration settings may be required and additional
 features can be configured from this menu. Refer to Chapter 4 - Configuring Targets for detailed
 information regarding target configurations.

 Bootloader
 The Bootloader menu item will open the Bootloader dialog window. This window is used to install or
 update hardware target kernels and to configure some features such as the SD Card, Ethernet and
 USB.. The Bootloader menu item is only available in the Run Mode.

 OptiCAN
 The OptiCAN menu item will open the OptiCAN Configuration Tool. This tool is used to configure the
 OptiCAN network. The OptiCAN menu item is only available in the Run Mode and when OptiCAN is
 enabled and supported.

 File Transfer
 The File Transfer menu item will open the File Transfer window (Monitor Mode only). The File
 Transfer window is used to browse, write to and read files from the SD card (if installed on the actual
 hardware target).

 WiFi Setup
 The WiFi Setup menu item will open the WiFi Setup window (Monitor Mode only). The WiFi Setup
 window is used to configure the WiFi settings including operation mode, access points, passwords
 and security. Once configured, the settings are stored on the target device.

REPORTS MENU

The REPORTS Menu is used to generate, view and print reports that may be helpful when developing a
ladder diagram project.

 Variable Definitions
 The Variables Definitions report generates a list of all variables present in the ladder diagram project
 and their specific information including name, I/O Number, Default Value and their description.

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 28

 Cross References
 The Cross Reference opens the Cross Reference Dialog box. This box is where the criteria for
 the report is selected. The following are the selectable criteria items: Input, Output, Internal,
 Function, Unused Variables, Contacts Without Coils, Coils Without Contacts, Drum Sequencer
 Tables, Retentive Variables and Network Address / Registers. After the required items are selected
 or deselected, click ok. This generates the viewable and printable report.

WINDOW MENU

The WINDOW Menu is the basic Window’s menu for viewing and controlling open application windows.
This menu is typically found in every Window’s based program. Since this functionality is based on Win-
dows, it will not be described in detail.

HELP MENU

The HELP Menu is useful to determine software versions and registration information. Currently, there is no
active help built-in to the EZ LADDER Toolkit.

 About
 Opens the EZ LADDER Toolkit about dialog box. The Toolkit version is displayed at the top of the
 dialog box. The File Versions tab identifies versions of each of the EZ LADDER Toolkit components.
 The License Information tab identifies the EZ LADDER Toolkit Serial Number and who it is registered
 to.

 Splash Screen
 Opens the EZ LADDER Toolkit splash screen. This screen is normally viewable for a few seconds
 when EZ LADDER Toolkit is started.

EZ LADDER Toolkit Tool Bars and Tool Bar Buttons
The EZ LADDER Toolkit provides tool bars for many common functions for ease of use and to increase
efficiency when programming ladder diagram projects. As discussed earlier, many of these tool bars may be
either viewed or hidden. EZ LADDER Toolkit defaults these tool bars as viewable.

Figure 2-3

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 29

Each tool bar contains multiple buttons. The following describes the function of each button.

 New Project. Opens a new blank EZ LADDER Toolkit Project Window.

 Open Project. Browse and open an existing EZ LADDER Toolkit Project.

 Save Project. Saves the currently selected EZ LADDER Toolkit Project.

 Cut. Cuts (Deletes) the selected Items.

 Copy. Copies the currently selected items to the Window’s Clipboard.

 Print Project. Opens the Print dialog for printing the EZ LADDER Toolkit Project.

 Help. Opens the Help About dialog.

 Select Tool. Selects individual or multiple items. Click on item to select or click and drag to
 select multiple items.

 Horizontal Link. Used to draw horizontal links between functions, object and variables.

 Vertical Link. Used to draw vertical links between functions, object and variables.

 Edit Variables. Opens the Edit Variables Dialog. Variables are created, edited and deleted
 using this dialog box.

 Insert Variables. Clicking in the ladder diagram workspace inserts a variable in that location.
 The inserted variable is selected from a dialog box that opens.

 Verify Program. Verifies the ladder diagram and elements are complete and do not break
 any rules. This is automatically done when the compile button is clicked.

 Compile Program. This does an automatic verify and then compiles the ladder diagram
 project for the specific hardware target (controller).

 Monitor Mode. This changes the EZ LADDER workspace from the Edit Mode to the Monitor
 Mode. The Monitor Mode is where ladder diagram projects are downloaded to and
 monitored on targets.

 Insert Comment. This inserts a comment block into the ladder diagram project.

 Direct Contact. This inserts a Direct Contact (Normally Open Contact) into the ladder
 diagram project workspace wherever you click.

 Negated Contact. This inserts a Negated Contact (Normally Closed Contact) into the ladder
 diagram project workspace wherever you click.

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 30

 Direct Coil. This inserts a Direct Coil (Normally Open Coil) into the ladder
 diagram project workspace wherever you click. Can only be placed in last column.

 Negated Coil. This inserts a Negated Coil (Normally Closed Coil) into the ladder
 diagram project workspace wherever you click. Can only be placed in last column.

 Count Up Function. This inserts a Up Counter Function into the ladder diagram project
 workspace wherever you click.

 Count Down Function. This inserts a Down Counter Function into the ladder diagram project
 workspace wherever you click.

 Count Up and Down Function. This inserts an Up and Down Counter Function into the
 ladder diagram project workspace wherever you click.

 Pulse Timer Function. This inserts an Pulse Timer Function into the ladder diagram project
 workspace wherever you click.

 On Timer Function. This inserts an ON Timer Function into the ladder diagram project
 workspace wherever you click.

 Off Timer Function. This inserts an OFF Timer Function into the ladder diagram project
 workspace wherever you click.

 This is used to insert any function (specifically those
 functions that do not have a quick used tool bar
 button. Select the function from the drop down
 menu and click the Insert Function button. This will
 place the function into the ladder diagram project
 workspace wherever you click.

 Edit ST Functions. Opens the EZ LADDER Toolkits
 Structured Text Function Editor. This window is used for configuring
 structured text items. For more information on structured text, See
 Chapter 26 - Structured Text.

Ladder Diagram Workspace
The ladder diagram workspace is the area of the screen where objects and links are placed to create the
ladder diagram program. Most objects can be placed at any location in the workspace provided there is ac-
tual space available. The DIRECT coil, Negated coil, LATCH coil and UNLATCH coil are the only objects that
must be placed in a particular location. They must be located in the last column (next to the right power rail).
Any attempt to place one of them in another location will cause an error dialog box to be displayed.

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 31

A ladder diagram is created using rungs. A rung is a horizontal line of logic. EZ LADDER Toolkit allows the
maximum number of rungs to be configured when the target is selected in the Project Settings dialog. Fig-
ure 2-4 shows the ladder diagram workspace and rungs of horizontal logic.

Cross Reference Window Pane
EZ LADDER Toolkit provides a real-edit-time Cross Reference Window. This
window provides lists of contacts, coils, variables, and functions as well as their
location by rung. This quick reference provides an easy method to locate
where a contact or other function is located in the ladder diagram program.
Figure 2-5 shows the Cross Reference Window. Cross references are updated
automatically when objects change.

 This window may be used to find objects quickly. Double-click on any
 of the object rung numbers listed for an object or function and EZ
 LADDER Toolkit will locate and display that section of the ladder
 diagram.

The Cross Reference Window may be viewed or hidden by using the
View Cross References Menu.

ELEMENTS on RUNG 1

ELEMENTS on RUNG 2

Rung Numbers

Figure 2-4

Figure 2-5

Chapter 2 Navigating EZ LADDER Toolkit

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 32

Output Window Pane
EZ LADDER Toolkit provides an Output Window pane where error messages are displayed. Typically, error
messages are only updated and displayed during a Verify operation or Compile operation. Figure 2-6 dis-
plays an example error identified during a compile process.

 When an error message identifies a location, (i.e.: “ERROR: Object Motor at: (9,1) doesn’t have a
 left link at (8,1)), the first number in the location refers to the column in the workspace while the
 second number refers to the actual rung number where the error occurs (Column, Rung).

 If the Output Window is not visible and an error is detected during a compilation, the Output Window
 will be reset to a visible state to announce the error.

Opening Existing Ladder Diagram Project Files
Existing ladder diagram project files may be opened and manipulated by editing, downloading and saving.
To open an existing ladder diagram project (.dld) file, use the File...Open menu.

 Password protection is enforced if enabled in the project settings. When enabled, to open the ladder
 diagram file, you will be required to enter a password that will be compared against the ladder
 diagram file’s credentials list. Only allowed permissions for the password entered will be allowed. If
 the password entered is not in the list, then the ladder diagram file cannot be opened or viewed.
 Refer to Chapter 25 - Password Protection for password details.

Figure 2-6

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 33

CHAPTER 3
Ladder Diagram Basics

This chapter provides detailed information on understanding the origin of ladder diagrams
as they relate to original relay logic, basic ladder diagram symbols, power rails, links, types
of circuit connections and ladder diagram functionality.

Chapter Contents
Relay Logic vs Ladder Diagram ...34

Basic Ladder Diagram Symbols...35
Contacts ...35
Coils ..35

Power Rails and Links ..36
Power Rails ..36
Links ...36

Connection Types ..37

Understanding Ladder Diagram Functionality38

Chapter 3 Ladder Diagram Basics

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 34

Relay Logic vs Ladder Diagram
Prior to the invention of the Programmable Logic Controller (PLC), control panels consisted of large num-
bers of relays, motor starters and other devices, wired to create the required functionality. Today, with the
use of PLCs, the same functionality is achieved by drawing the circuit functionality in software; similar to the
original relay logic panel wiring diagrams were drawn.

Ladder Diagram is a graphical representation of boolean equations, using contacts (inputs) and coils (out-
puts). The ladder diagram language allows these features to be viewed in a graphical form by placing graph-
ic symbols into the program workspace similar to a Relay Logic electrical diagram. Both ladder diagram and
relay logic diagrams are connected on the left and right sides to power rails.

A comparison of a hard-wired relay logic system and a programmable system using EZ LADDER Toolkit as
the programming platform will show the similarities which make the programming using EZ LADDER Toolkit
quick and easy to apply to any application.

Figure 3-1 shows a block diagram on the left and the hard-wired relay logic control system on the right. For
easy comparison, it is divided into three sections.

Input Devices: Includes devices operated manually (i.e.: push buttons) and devices operated automatically
(i.e.: limit switches) by the process or machine being controlled.

Relay Control Logic: Consists of relays interconnected to energize or de-energize output devices in re-
sponse to status of input devices, and in accordance with the logic designed into the control circuit.

Output Devices: Consists of motor starters, solenoids, etc. which would control the machine or process.

In place of hard-wired relay logic circuitry, EZ LADDER Toolkit applications are programmed using relay-type
symbology. This symbology brings ease and familiarity to the programming while adding flexibility. Figure
3-2 is the same circuit as shown in Figure 3-1 as it is programmed using the EZ LADDER Toolkit’s relay-type
symbology.

Figure 3-1

Figure 3-2

Chapter 3 Ladder Diagram Basics

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 35

Basic Ladder Diagram Symbols
In ladder diagram, all devices are represented by symbols (objects and function blocks). Appendix A -
Function Reference provides detailed descriptions for all EZ LADDER Toolkit objects and function blocks.
This section will give a basic information regarding the most commonly used objects.

Contacts
Contacts represent two types of devices. The first is real world digital input (devices) such as limit switches,
push-button switches, and proximity sensors. The second is that contacts may represent internal relays;
also named control relays (CRs). When acting as a real world input, the ladder diagram object will rep-
resent the current state of the real world input it is assigned. When used as an internal control relay, the
contact will represent the current state of the control relay’s coil.

Contacts are represented in the EZ LADDER Toolkit by two different objects: Direct Coil and Negated Con-
tact.

 Contacts are always shown in their at-rest or un-powered state.

Direct Contact
Also known as a normally open contact, the direct contact may represent real world inputs or internal relay
contacts. As a real world input, when the input is energized (TRUE), it will be represented by a TRUE condi-
tion in the ladder diagram; causing power to flow through it to any following objects and function blocks. As
a real world input, when the input is de-energized (FALSE), it will be represented by a FALSE condition in
the ladder diagram; not allowing power to flow through it to any following objects and function blocks. When
used as an internal relay, the state of the contact (TRUE or FALSE) depends upon its internal coil state.

Negated Contact
Also known as a normally closed contact, the negated contact may represent real world inputs or internal
relay contacts. As a real world input, when the input is energized (TRUE), it will be represented by a FALSE
condition in the ladder diagram; not allowing power to flow through it to any following objects and function
blocks. As a real world input, when the input is de-energized (FALSE), it will be represented by a TRUE con-
dition in the ladder diagram; causing power to flow through it to any following objects and function blocks.
When used as an internal relay, the state of the contact (TRUE or FALSE) depends upon its internal coil
state and is always opposite of the Direct Contact.

Coils
Coils represent two types of devices. The first is real world digital output (devices) such as solenoids, valves
and motors. The second is that coils may represent internal relays; also named control relays (CRs).
When acting as a real world output, the ladder diagram object will control the current state of the real world
output it is assigned. When used as an internal control relay, the coil will control the current state of the
control relay’s coil.

Chapter 3 Ladder Diagram Basics

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 36

Direct Coil
Also known as a normally open coil, the direct coil may represent real world outputs or internal relay coils.
As a real world output, when the coil is energized (TRUE), it will be cause the real world output to be TRUE
(energized). As a real world output, when the coil is de-energized (FALSE), it will cause the real world out-
put to be FALSE (de-energized). When used as an internal relay, it controls it’s contact(s) state.

Negated Coil
Also known as a normally closed coil, the negated coil may represent real world outputs or internal relay
coils. As a real world output, when the coil is energized (TRUE), it will cause the real world output to be
FALSE (de-energized). As a real world output, when the coil is de-energized (FALSE), it will be cause the
real world output to be TRUE (energized). When used as an internal relay, it controls it’s contact(s) state
and is always opposite of the Direct Coil.

Power Rails and Links

Power Rails

As previously discussed, an EZ LADDER Toolkit ladder diagram contains objects (contacts, coils and func-
tion blocks). For the ladder diagram to operate correctly, each rung must be complete on each side by con-
necting it to the left power rail and the right power rail. This is required because all objects in a rung must
have a power source (the left power rail) to provide power to the objects and a common return (right power
rail) to complete the circuit.

Power rails run the entire length of an EZ LADDER Toolkit project. Figure 3-3 shows a typical ladder dia-
gram rung and identifies the power rails. Please note, the rung is connected to both the right and left power
rails.

Links

As discussed previously, a rung must be complete and connected to both power rails for proper operation.
Links (Horizontal and Vertical) are used to connect objects and function blocks to other objects and function
blocks as well as to power rails. Horizontal Links connect devices horizontally or on the same rung. Vertical
Links connect devices on different rungs. Consider each link like an electrical wire that is needed to connect
devices in a circuit. Figure 3-4 identifies the types of links.

Figure 3-3

Left Power Rail Right Power Rail

Chapter 3 Ladder Diagram Basics

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 37

Connection Types
As seen in previous sections, the use of power rails, horizontal and vertical links creates a wide variety of
ways to draw ladder diagram circuits. Below are some typical connection types. They are created by using
horizontal and vertical links.

Simple Series Connection

Multiple Device Series Connection

Parallel Connection

Figure 3-4

Vertical Link
Horizontal Link

Figure 3-5

Figure 3-6

Figure 3-7

Chapter 3 Ladder Diagram Basics

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 38

Complex Series / Parallel Connection

Understanding Ladder Diagram Functionality
When a ladder diagram is installed on a PLC or other controller, it will scan the program from top to bottom
and left to right. A scan is similar to reading a page. A page is read from top to bottom reading each line
left to right. One complete reading of the program is considered a scan. The larger the scan time (one
complete read cycle), the less often any real world I/O devices are monitored and controlled. Scan time is
an important consideration in the design of a ladder diagram. This scan time may be viewed in the Monitor
Mode when running a ladder diagram with a hardware target.

Figure 3-9 diagrams the functionality and order which a ladder diagram functions.

Figure 3-8

Figure 3-8

All real-world inputs are read
for their state (true/false)

All real-world outputs are set
to their new state (true/false)

Rung 1 is scanned from Left to
Right, Setting any internal

 variables immediately

Each additional rung is
scanned left to right in order
and internal variables are set.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 39

CHAPTER 4
Configuring Targets

This chapter provides basic information and steps required to identify, select and configure
hardware targets (actual hardware controllers or PLCs) in the EZ LADDER Toolkit.

Chapter Contents
Understanding Targets ...40

The Project Settings Window ...40
Target Tab Settings ...41
Version Tab Settings ...42
Options Tab Settings ..43

Selecting the Hardware Target ...43

Viewing Target Information ..44

Updating / Installing Target Kernels ...45

Recovering Communications ...46
When Unable to Connect to the Target ...46

Target Utilities ..48
When Able to Connect to the Target ..48

Bootloader Target Options & Configurations ...49

Installing Target Devices / Features ..50
Setup GPIO ..51
Adding Devices ...52

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 40

Understanding Targets
A Target is the term used in the EZ LADDER Toolkit to describe the actual electronic hardware controller
or Programmable Logic Controller (PLC) to which the ladder diagram is specifically written to operate on.
Generally, most ladder diagrams can be utilized on different hardware targets with only minor changes to the
ladder diagram program itself.

Each hardware target is unique in that each usually have differing number of inputs, outputs, analog I/O and
other features. Due to the differences, in each EZ LADDER Toolkit ladder diagram project, the actual target
must be identified (selected) and it’s optional features (if any) installed and configured properly. Refer to
Chapter 23 - Hardware Targets for specific target details for each supported target.

 It is important to understand that using PLC targets such as, Harsh Environment Controllers, etc
 typically have some features that require additional configuration after the actual hardware target is
 selected; while targets such as the PLC on a Chip require you to install and configure each and every
 I/O point, device and feature you intend to use.

 Failure to correctly select, install or configure a feature in the Project Settings may result in the target
 not operating as anticipated or features and functions not showing available for the target.

For a target to be able to use the compiled ladder diagram program created using the EZ LADDER Toolkit, it
must also have its kernel installed. The kernel is the hardware target’s basic operating system or bios. The
kernel is required before any compiled programs can be installed. The kernels for targets are automatically
installed on your computer when the EZ LADDER Toolkit is installed. They are typically found in C:\Program
Files\Divelbiss\EZ Ladder\Kernel\.

 Hardware targets ship from the factory without a kernel installed. The kernel must installed prior to
 downloading the first ladder diagram program. The target is shipped without a kernel to provide
 greater flexibility in version control.

The Project Settings Window
To create a ladder diagram project in EZ LADDER Toolkit, you must first select the hardware target. If you
attempt to place any ladder diagram objects in the workspace prior to selecting a target, the Project Settings
Window will open requiring you to select the target automatically. EZ LADDER Toolkit uses the target selec-
tion to filter and display only ladder diagram objects and functions supported by the selected target.

 Only the actual hardware target that will be used should be selected. Selecting a different target will
 allow the use of objects and function blocks that may not be supported by the actual hardware target
 as well as not allow use of objects and function blocks that are supported.

To select the target, either try to place a ladder diagram object in the workspace or use the Project Menu
 and click Settings. The Project Settings Window / Dialog box will open. Figure 4-1 is an example of the
Project Settings Window and identifies the main components of it.

While all targets are displayed in the Project Settings (M-Series or P-Series), the focus will be on the P-Se-
ries products and target configurations.

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 41

Target Tab Settings

 1. Project Setting Tabs: Select the appropriate tab to configure target settings. Figure 4-1
 represents the TARGET tab, Figure 4-2 represents the VERSION tab,
 and Figure 4-3 represents the OPTIONS tab. Clicking on a tab selects
 the tab for viewing.

 2. Communications
 Settings: Select the serial port on the computer that will be used to communicate
 to the target. These settings are used to connect, download and
 monitor ladder diagram programs running in EZ LADDER’s program
 run and monitor mode. The baud rate for all hardware targets is
 automatically set in EZ LADDER and cannot be changed.

 3. Target List: This is a list of all targets supported by your version of EZ LADDER
 Toolkit. Click on the target name to select.

 When selecting some targets, an additional dialog may open
 depending on the hardware target selected.

 4. Edit Passwords: This button opens Password Setup Dialog box. This box is used to
 configure a Master Password for the project and additional user /
 passwords and permissions for others to view, edit, etc. This button will
 not be visible unless a target is selected.

1

Figure 4-1

2

3

4

5

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 42

 5. Properties: When a target has been selected, the properties button may appear
 (target specific). If this button appears, clicking the properties will allow
 additional configurations for the selected target. Properties may
 include: Model Number and installing / removing additional target
 supported features (Modbus, OptiCAN, Ethernet, etc). This button will
 not be visible unless a target is selected.

Version Tab Settings

The Version Tab will display the current build and version of the ladder diagram that is currently active in the
EZ LADDER Toolkit. The build and version information is useful when determining if a program version is
current. Figure 4-2 shows the Version settings tab of the Project Setting Window. Version setting may be
changed in this window, if required.

 1. Version Number: A version number for the ladder diagram may be entered here. This
 number will not change automatically. It must be manually adjusted for
 each revision or release of the ladder diagram project.

 2. Build Number: The current build number is displayed here. Each time the ladder
 diagram project is Compiled, the build number automatically
 increments. This number may be over-written in this window if needed.

 3. Company Name: Optional information that can be entered about the company and a
 Phone Number: section for notes.
 Notes:

Figure 4-2

1

2

3

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 43

Options Tab Settings

The Options Tab will display the currently selected options and preferences. Some of these options are tar-
get specific while others are standard. Figure 4-3 shows the Options settings dialog box.

 1. Number of Rungs: This is where the maximum number of rungs in the ladder diagram
 is specified. The default number is 100 rungs.

 Inserting or Deleting rungs in an EZ LADDER Toolkit ladder diagram
 project will change this number accordingly. This number should be
 considered a starting number of rungs. If the number of rungs is not
 sufficient for the program size, return to this dialog and adjust the
 number of rungs. The number of rungs may be adjusted at any time.

Selecting the Hardware Target
As discussed in a previous section, using the dialogs, select the target from the list. If required, select the
actual model number, configure any features that you wish to use and click ok. Chapter 23 - Hardware
Targets includes additional information for each supported hardware target.

To save the target selection, you must save the ladder diagram project using the Save or Save As menu
items. Hardware Target Selections are for the currently open and active EZ LADDER Toolkit ladder diagram
project only. For each new project, you must repeat the hardware target selection and configuration pro-
cess.

Figure 4-3

1

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 44

Viewing Target Information
EZ LADDER Toolkit provides includes a built-in quick reference tool to identify what I/O, Analog and func-
tions are supported by a target. The first step is selecting a hardware target as previously shown. To view
the target supported features, from the View menu, click Target Information. The Target Information win-
dow will open as shown in Figure 4-4.

This window identifies: the Target Name, Minimum Target Kernel Version that is needed for this version of
EZ LADDER Toolkit, Supported Objects and Function Blocks, Analog Inputs, Digital Inputs and Digital Out-
puts.

The Target Information is printable using the print button.

Figure 4-4

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 45

Updating / Installing Target Kernels
 As new hardware targets, functions and features are added to the EZ LADDER Toolkit and new
 versions of EZ LADDER Toolkit are developed and released, to take advantage of newer features, it
 will be necessary to update the actual target’s kernel with newer version.

 These same steps may be taken to install a kernel in a target that is new as all new targets from the
 factory do not have kernels installed.

EZ LADDER Toolkit provides an easy way to update the kernel on the hardware target.

 1. Obtain the new kernel for the target (provided by Divelbiss via CD, USB, e-mail or download).

 2. Start EZ LADDER Toolkit and open any project that uses the target or create a new project with
 the actual hardware target selected. This project must have at least one rung of ladder. Compile
 the program if not already compiled.

 3. Verify the Serial Port Settings and connect the target to the computer.

 4. Enter the Monitor Mode.

 5. From the Project menu, select Bootloader.

 6. EZ LADDER will connect to the target and the Bootloader dialog will open showing the current
 version of the target’s kernel (if any). It will also display the target’s bootloader version.
 See Figure 4-5.

Figure 4-5

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 46

 6. Click the erase user program button to erase the ladder diagram project on the target (if any).

 It is highly recommended that the user program be erased before upgrading a kernel.

 7. Click browse and select the kernel file for the hardware target. The dialog will update showing the
 selected kernel file version in the Upload File section of the Bootloader dialog box.

 8. To update or install the new kernel, click update target. A status box will appear indicating the
 status of the kernel installation. During this, the new kernel is being installed. This may take
 several minutes.

 When updating or installing a kernel, DO NOT REMOVE the CABLE or the POWER. If
 interrupted during this process, the target will be corrupted and return to a bootloader mode.
 You must repeat all the above steps again.

 Only the correct target’s kernel may be installed into a target. The target is checked against
 the kernel automatically and will display an error if the wrong kernel is selected and an update
 is attempted. If a wrong kernel is somehow loaded, contact Divelbiss Technical Support for
 help regarding removing incorrect kernels.

Recovering Communications
EZ LADDER Toolkit provides additional target utilities that may be used correct actual target problems and
restore communication from EZ LADDER to the target. Although rare, occasionally, targets get corrupted
and communications cannot be established using normal methods. This can be caused by not erasing a lad-
der diagram prior to upgrading kernels, wrong kernels installed and interruptions during kernel installations.

 The bootloader is installed at the factory and can not be updated outside the factory environment.

When Unable to Connect to the Target

The following steps may be taken if you can verify the connection problems is with the actual hardware tar-
get unit specifically (another unit connects with the same setup and program).

 1. Start EZ LADDER Toolkit and open any project that uses the target or create a new project with
 the actual hardware target selected. This project must have at least one rung of ladder. Compile
 the program.

 3. Verify the Serial Port Settings and connect the target to the computer.

 4. Enter the Monitor Mode.

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 47

 5. Press the F11 key on your computer’s keyboard. The dialog box in Figure 4-6 will open.

 6. Disconnect power from the hardware target.

 7. Click the enter bootloader button in the dialog box. A timing dialog box will appear. This is
 amount of time that is remaining to re-apply power to the hardware target.

 8. Apply power to the hardware target. If the time has elapsed, repeat steps 6-8 again.
 The hardware target will now allow bootloader operations (other buttons are now active).

 9. Choose the correct option to try and resolve your target issue.

 Bootloader: Bootloader will open the bootloader dialog box for updating kernels.

 Erase LD Program: Erases the ladder diagram project from the hardware target’s memory.
 In the event the program is hanging and preventing a normal
 connection, this will erase the program to allow a normal connect.

 Restart Target: Causes the hardware target to reboot. This is required when all other
 bootloader actions have been completed. Without the restart, the
 kernel will still not connect normally.

 Using the Restart Target is the same as resetting the power to the
 hardware target. Both will cause the target to restart and operate
 normally.

 If the incorrect kernel has been installed or there is a corrupt kernel installed, from the
 bootloader screen, press the F11 key. A dialog will appear asking if you are sure you want
 to erase the kernel. To erase the kernel and reset the target to a blank target, click the yes.
 If you don’t wish to erase the kernel, click no. This is how the kernel may be erased.

 When a Kernel or User Program is erased, there is no recovery. Erasing a Kernel / User
 Program should only be done after verification that these items are available to install /
 re-install.

Figure 4-6

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 48

Target Utilities
When communications is present between EZ LADDER and the hardware target, there are additional op-
tions / utilities available when connected to the target.

When Able to Connect to the Target

If you can connect normally to the target, there are only a few additional utilities available in the EZ LADDER
Toolkit.

 1. If the target is connected to normally, press the F11 key on your computer’s keyboard. The
 Device Properties dialog box will appear as in Figure 4-7.

 If the actual hardware target does not support a Real Time Clock, then an error dialog box may
 appear if you were successfully, connected to the hardware target prior to press the F11
 button. Click ok to continue.

From this dialog, you can compare the actual computer time and date to the current time and date set on
the hardware target. If you wish to synchronize the time (set the hardware target to the computer time), click
the sync utc button (for UTC time) or sync local (for local date/time). The times should now be synchro-
nized. For more information on date, time and real time clock (including syncing), see Chapter 12 - Real
Time Clock.

The ladder diagram project can be erased from this dialog by pressing the erase user program button.

 Use caution when deleting the ladder diagram project from the target. There is no Undo. To reload
 the hardware target, the original ladder diagram project must be opened, compiled and reloaded to
 the target.

Figure 4-7

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 49

Bootloader Target Options & Configurations
When communications is present between EZ LADDER and the hardware target, there are additional op-
tions available in the Bootloader dialog based on the actual target connected. These options are target
dependent and the dialogs associated are used to configure the options.

In the Bootloader dialog, click the target options button. See Figure 4-8. The Target Options dialog box will
open.

The Target Options dialog has three tabs: Ethernet Options, USB Options and SD Card Options. These
items are additional configurations that are required if using any of these features on your target. See Fig-
ure 4-9.

For details on the Ethernet settings and port use, see Chapter 19 - Ethernet. This dialog displays informa-
tion regarding the Ethernet configuration including MAC Address, etc and provides user configuration items
such as Host Name and DHCP settings.

For details on the SD Card Options settings and use, see Chapter 20 - SD Card Support.

When all the configurations required have been completed, click ok to close the Target Options dialog. This
will save these options. Click the restart target button to restart the target and close the Bootloader dialog.

 If the incorrect kernel has been installed or there is a corrupt kernel installed, from the bootloader
 screen, press the F11 key. A dialog will appear asking if you are sure you want to erase the kernel. To
 erase the kernel and reset the target to a blank target, click the yes. If you don’t wish to erase
 the kernel, click no. This is how the kernel may be erased.

Figure 4-8

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 50

Selectable Tabs

Figure 4-9

Installing Target Devices / Features
For greater flexibility, some target features and devices are not automatically installed on the actual hard-
ware target when the target is selected as previously shown. Devices / Features automatically installed is
entirely dependent upon the actual target selected. The P-Series PLC on a ChipTM for example only installs
very minimum features while the HEC-P5XXX controller installs some features and devices, but leaves oth-
ers to the actual user to install and configure.

 For devices and features that are not automatically installed, they must be installed manually. The
 following steps are shown as basics for installing additional devices and features. These are general
 steps only and some variances will occur based on the target and devices to be installed.

To select the target, either try to place a ladder diagram object in the workspace or use the Project Menu
 and click Settings. The Project Settings Window / Dialog box will open. Figure 4-1 is an example of the
Project Settings Window and identifies the main components of it.

Select (highlight) the target and click the properties button. The XXXX (XXXX represents the target) Target
Properties window will open. Using the DCPN drop down menu, select the model number of the target (if
available). Refer to Figure 4.10.

This window consists of an Installed Devices pane, DCPN drop down menu and four buttons used to config-
ure devices.

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 51

The Devices Pane shows all the currently installed devices and features for the target. Add new devices are
added or devices are removed, this pane will update accordingly.

Setup GPIO

The setup gpio button is used to add / remove General Purpose I/O (GPIO), also known as digital inputs
and digital outputs. Any digital I/O to be used in the ladder diagram program must be installed in the target’s
devices. To configure the digital I/O (GPIO), click the setup gpio button. The targets GPIO window / dialog
box will open. Refer to Figure 4.11. Many product’s GPIO pins are automatically configured when the prod-
uct is selected from the Project...Settings Menu.

 GPIO does not appear in the Devices pane when installed.

 To install digital inputs, select GPIO Pins (listed by name and actual PLC on a Chip pin) that are
 required and click the add to inputs button. These GPIO pins will move from the GPIO Pins pane to
 the Inputs Pane. If Inputs were added incorrectly or need to be removed, select them in the Inputs
 pane and click the remove from input(s) button.

 For targets that automatically configure the GPIO settings, it is not possible to change any of the
 GPIO assignments.

Figure 4-10

DCPN Select Drop Down Menu
Installed Devices Pane

Setup GPIO button
Add Device button
Properties button
Remove button

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 52

 To install digital outputs, select GPIO Pins (listed by name and actual PLC on a Chip pin) that are
 required and click the add to outputs button. These GPIO pins will move from the GPIO Pins pane to
 the Outputs Pane. If Outputs were added incorrectly or need to be removed, select them in the
 Outputs pane and click the remove from output(s) button.

When all the GPIO have been installed, click the ok button to save the settings and close the dialog / win-
dow.

 GPIO pins are designed to be configured as Inputs or as Outputs, but cannot be both simultaneously.
 Based on the Target selected, there may be no GPIO configuration available.

 When PWM (Pulse Width Modulator) is configured, the GPIO pins associated with it are not available
 as GPIO as they are used as PWM. GPIO pins can only be used as either Outputs or PWM, not both
 simultaneously in the same program.

Adding Devices

The add device button is used to add / remove devices such as serial ports, Ethernet, Quadrature Inputs, etc.
Any device to be used in the ladder diagram program must be installed in the target’s devices. To add ad
device, click the add device button. The targets Devices window / dialog box will open. Refer to Figure 4.12.

 All supported devices are shown for the target.

The window / dialog is divided into two panes, Devices and Variable Names. As devices are selected, the
associated variables that will be installed with them are shown in the Variable Names pane. Select a device
from the Devices pane by clicking on the Name (highlight) and click ok to install it.

Figure 4-11

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 53

 Depending upon the device, additional dialog boxes may appear with additional configuration items
 that are required for the device before it can operate. Select the appropriate information for these
 dialog boxes. Additional support is given in later chapters that are specifically written for some
 devices such as Ethernet, etc.

 Some device may be required to be installed prior other devices. For example, before Modbus Slave
 can be installed, ether the Ethernet or a Serial Port (UART) must be installed previously as when
 installing the Modbus Slave, the port must be selected. This is only an example, other situations exist
 similar to this. Other examples may be adding the I2C port before a FM24XXX FRAM, etc.

 When PWM (Pulse Width Modulator) is configured, the GPIO pins associated with it are not available
 as GPIO as they are used as PWM. GPIO pins can only be used as either Outputs or PWM, not both
 simultaneously in the same program.

Figure 4-13 is the Target Properties Window with some devices installed. When all the devices required
have been configured, click ok to save the settings and close the window. Be sure to save the ladder dia-
gram program after making target changes.

Figure 4-12

Chapter 4 Configuring Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 54

Figure 4-13

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 55

CHAPTER 5
Creating Ladder Diagram Projects

This chapter provides basic information and understanding to create ladder diagram
projects using EZ LADDER Toolkit including variables, variable types, inserting variables,
inserting objects and functions, bit addressable variables, drawing links, inserting and
deleting rungs, saving ladder diagram projects and verifying and compiling ladder diagram
projects.

Chapter Contents
Creating Ladder Diagram Projects ..56

Understanding Objects & Variables...56

Creating and Placing Variables ..58

Variable Types ..59

Variable Attributes ...60

Keeping Variable Values on Power Loss...63

Placing Objects and Drawing Links...63

Using Copy and Paste...65

Inserting and Deleting Rungs ...66

Saving EZ LADDER Toolkit Projects ...66

Verifying and Compiling Ladder Diagrams ...67

Bit Addressable Variables ..68

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 56

Creating Ladder Diagram Projects
When EZ LADDER Toolkit is opened, it will automatically create a new blank project and it’s corresponding
workspace as shown in Figure 5-1. A new project may be created at any time by choosing New from the
File menu.

Before adding any objects, functions or variables to the new workspace, the Target must be selected and
configured according to the target needs and your program requirements. Select your target by choosing
Settings from the Project menu. See Chapter 4 - Configuring Targets and Chapter 23 - Hardware
Targets for details.

 When configuring your target, it is recommended to only install and configure features that are
 intended to be used. Installing unused features may degrade target performance.

Understanding Objects & Variables
Ladder diagram projects in EZ LADDER Toolkit are comprised of a combination of objects, function blocks,
variables and links. It is important to understand the basic relation of these items. These items will be cov-
ered first generally, then in more detail as this chapter progresses.

Figure 5-1

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 57

Nearly all ladder diagram objects and function blocks rely on variables, either as a definition for the object or
addition to the function block to provide required data to function properly. A variable is a placeholder that
represents values that can change. A variable can represent any number depending upon its type.

Variables are an important part of understanding how EZ LADDER uses functions and objects. Some ob-
jects, such as Direct Contacts or Direct Coils are actually defined as variables themselves while other func-
tion blocks such as TON will require variables created, inserted and connected, using links, to the function
block itself to provide set points and other functional requirements.

 Variables in the EZ LADDER Toolkit are global, meaning that each variable must be uniquely named
 and can be changed or used anywhere in the ladder diagram project.

Using function blocks, variables can pass data (copy or move) to other variables, functions and objects.
Figure 5-2 illustrates a simple ladder diagram project that contains objects that are variables and inserted
variables linked to function blocks.

Figure 5-2 identifies the two typical ways variables are used in an EZ LADDER Toolkit ladder diagram proj-
ect. As shown, the On-Delay timer function block identified as TON1 uses two unique variables (one for the
set point - PT and one for the elapsed time - ET). All contacts and coils are actually variables themselves
and as they are created, they must be either assigned to an existing variable or a new variable created must
be created (declared) for them.

Figure 5-2

Direct Contact is
actual variable
named MotorStart

ElapTime is actual
variable inserted
and linked to the
function block
TON1.

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 58

Creating and Placing Variables
Placing and creating variables can be done several ways. Inserting some objects automatically require the
selection or creation of a new variable when being inserted (an automatic dialog box), while function blocks
typically require you to insert any needed variables and link them without being prompted to do so.

We will identify how to create and assign variables using two methods, although variable creation is basi-
cally the same for all methods.

Placing Contacts and Coil Type Objects

To place a contact, from the tool bar, select the Direct Contact and locate a point in the workspace to place
the item. Clicking that location will place the object. When placing certain objects (coils and contacts), a
Contact Properties dialog box will appear. You can choose a variable that already exists from the drop-
down list or type in a new name. For this example, we will type in a new name and click ok. If you had
selected a name that already exists, the object placement would be completed. Since we have chosen a
new variable, the dialog in Figure 5-3 will appear.

Click yes to create the new variable. The Add Variable dialog box will open automatically with the variable
name you entered already in the Name field. See Figure 5-4. For now click ok to create the variable. We
will cover the details of variable attributes later in this chapter. You have now successfully created a con-
tact with a new variable. Repeat the same as needed for new contacts or coils.

Figure 5-3

Figure 5-4

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 59

Placing a Linked Variable

To place a variable that is linked to a function block, from the tool bar, select the Insert Variables button (Inst
Vars). In the ladder diagram workspace, click in an open area and the Variables window will open. This
window contains tabs at the top for all variable types supported.

 When inserting a variable next to a function block input, only the variable types supported by the
 function block will be displayed as tabs in the Variables window.

Select the appropriate type for the variable you are needing to insert and click the add button. The Add Vari-
able dialog box will open automatically. Enter a variable name in the Name field. See Figure 5-4. For now
click ok to create the variable. We will cover the details of variable attributes later in this chapter. You have
now placed a linkable variable.

If the variable you need to insert already exists, select it from the list and click ok to insert it.

 Variables names must always begin with a letter and cannot contain spaces. Trying to begin
 variables with numbers or using spaces will result in a error message being displayed.

 Variables may be created at any time without inserting or placing them in the ladder diagram
 workspace. To create a variable without placing it, from the tool bar, select the Edit Variables button
 (Edit Vars). The Variables window will open as shown previously. Use the add button to create
 variables as needed.

 When function blocks are used with variables, as previously covered, only supported variable types
 are allowed. Typically, most function blocks will lock the types of variables linked to it’s outputs as
 the same type linked to it’s inputs. When changing variable types that are an input or an output to a
 function block, delete the variables and function block. Then insert the function block and new
 variables to remove all the variable type associations that previously existed.

Variable Types
There are four variable types supported in the ladder diagram of EZ LADDER Toolkit. They are: Boolean
(BOOL), REAL, INTEGER and TIMER. Each type of variable exists for specific purposes and each has pros
and cons depending upon the ladder diagram project needs.

Examples of Variables:

 Boolean: 0 or 1, False or True, Off or On
 Real: 234.56, 192.345
 Integer: 1, 525, 1034
 Timer: Days, Hours, Minutes, Seconds, Milliseconds

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 60

Boolean Variables

Boolean variables are based on only being in one of two states, typically either true or false (1 or 0, On or
Off). Boolean variables are most commonly used for contacts and coils, but also may be used with function
blocks as individual bits. Boolean variables are 1 byte in size.

Real Variables

Real variables are based on numbers that use floating point math (use decimal points). Real variables can
range from -1.7x1038 to 1.7x1038. Real variables are typically used for calculations and with functions where
decimal point accuracy is required. Real variables used with function blocks result in a slower Scan Time.
Real variables are 4 bytes in size.

Integer Variables

Integer variables are based on whole numbers (no decimal points) Integers can be ranged from
-2147483648 to 2147483647. Integers are used when decimal points are not required. Integer result in a
faster Scan Time than real variables. Integer variables Default Value can be entered in Hexadecimal for-
mat. Integer variables are 4 bytes in size.

Timer Variables

Timer variables are used in conjunction with timer function blocks to provide input set points and output
elapsed time. Timer variables consist of milliseconds, seconds, minutes, hours and days. Timer variables
are 4 bytes in size.

Variable Attributes
For each variable type, specific attributes will apply. For most variables, these attributes are common.
While some attributes are optional such as description, others are required prior to creating the variable.
When creating a new variable, it is ideal to set it’s attributes with as much detail as possible.

Integer, Real and Boolean Variable Attributes

When adding new integer, real or boolean variables, refer to Figure 5-5 for the Add Variable dialog box. The
following are fields (attributes) for variables. Some must be completed while others are optional.

 1. Name: The variable name is entered in this field. This name will be used to
 identify this variable and will be the name viewed in the workspace and any
 cross reference and reports. All names must begin with a letter and cannot
 contain any spaces. A unique name is require for each variable.

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 61

 2. Description: This is where a text based description may be entered for more clarification
 and details regarding this variable. Descriptions appear in reports and in
 many dialog boxes. This attribute is optional.

 3. Variable Type: The variable type is selected in this box. The choices are:

 Input: Select Input if the variable will actually represent a real
 world digital input on the target. Selecting this option will
 require that physical address of the input to be entered
 in the Var I/O Number field.

 Output: Select Output if the variable will actually represent a real
 world digital output on the target. Selecting this option
 will require that physical address of the output to be
 entered in the Var I/O Number field.

 Internal: Select Internal if the variable has no real world
 connection but is to be used internal in the ladder
 diagram project only.

 Retentive: This check box is used to identify retentive variables
 (variables that will store their current value on power
 loss and reload it automatically when power is restored).
 This feature must be supported on the hardware target.

 4. Var I/O Number: This is where the physical address of real world I/O points is entered. This
 field is only used if the Variable Type is either Input or Output. Some targets’
 Var I/O number is hard coded and cannot be changed.

 5. Default Value: This is where default variable values are set. An internal variable will be
 equal to this value unless it has been altered by the ladder diagram. This is
 used to preset values in the ladder diagram for comparisons as well as other
 uses. This field is optional.

 6. Address Register: When the ladder diagram project is configured to use register based
 communications such as Modbus or OptiCAN, the register assignment for the
 variable is configured in this field. If left blank, there is no assigned register.
 This field only appears if a feature that will use a register is installed or
 supported on the hardware target and Projects Settings. This field is optional.
 Clicking the edit button opens an additional dialog box with all the available
 networks and makes assigning registers easier.

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 62

Timer Variable Attributes

When adding new timer variables, refer to Figure 5-6 for the Add Variable dialog box. The following are
fields (attributes) for timer variables. Some must be completed while others are optional. Typically, time
durations are entered as the unit of measure closes to the set point.

 Larger times may be entered into fields provided that the total timer value does not exceed 24 days.
 For example, 1000 ms may be entered and will be considered 1 second when the program executes.
 However, if 750 hours is entered, the time is greater than 24 days and the timer will malfunction.

 1. Name: The variable name is entered in this field. This name will be used to
 identify this variable and will be the name viewed in the workspace and any
 cross reference and reports. All names must begin with a letter and cannot
 contain any spaces. A unique name is require for each variable.

 2. Description: This is where a text based description may be entered for more clarification
 and details regarding this variable. Descriptions appear in reports and in
 many dialog boxes. This attribute is optional.

 3. Days: The time duration in number of days.

 4. Hours: The time duration in hours.

 5. Minutes: The time duration is minutes.

 6. Seconds: The time duration in seconds.

 7. Milliseconds The time duration in milliseconds. The millisecond resolution is target specific
 and is shown in parenthesis.

Figure 5-5

1

6
3
5

2

4

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 63

 8. Retentive: This check box is used to identify retentive variables (variables that will store
 their current value on power loss and reload it automatically when power is
 restored). This feature must be supported on the hardware target.

Keeping Variable Values on Power Loss
In the event of a power loss to the target, EZ LADDER Toolkit is designed to allow ladder diagram variables
to be stored and then be reloaded when power is restored. This is called the Retentive feature and variables
must be configured as retentive as well as the hardware target must support this feature. See Chapter 7 -
Retentive Variables for more details on the retentive feature and Chapter 23 - Hardware Targets for which
targets support retentive variables.

Placing Objects and Drawing Links
To place an object in an EZ LADDER Toolkit project, select the object or function block from the tool bar or
select the object or function block from the tool bar drop down menu. Position the pointer in the ladder dia-
gram workspace where the object is to be inserted and left-click. This places the object at that point. As you
add objects, variables may need created. See earlier in this chapter for how to create variables.

Figure 5-7 illustrates the placement of a Direct Contact and Direct Coil. Please refer to Appendix A - Func-
tion Reference.

 The last placed object stays selected until a different object or button in the tool bar is chosen. This
 feature allows an object be placed multiple times without the need of re-selecting the object.

Figure 5-6

1

6

3

5

2

4

7

8

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 64

 To place an object or function, there must be enough space in the ladder diagram workspace at the
 point of insertion. If there is insufficient space, an error message will display.

 Refer to Figure 5-7, note when placing objects near the left or right power rails, links are
 automatically drawn to the power rails. This also applies when variables are inserted next to
 functions; the links are automatically drawn from the inserted variable to the function.

To finish the circuit shown in Figure 5-7, it will be necessary to draw a horizontal link between the contact
and coil on rung 1. Select the Horizontal Link Tool from the tool bar. Refer to Chapter 2 - Navigating EZ
LADDER Toolkit for details on tool bars and buttons.

To draw the link, click and hold the click at the location where the link will start, at the right side of the contact
on rung 1. Holding the mouse button down (clicked), drag the pointer to the left side of the coil on rung 1.
When the link is drawn connecting both objects, release the mouse button to complete the link.

If a vertical links are required (as in parallel circuits), select the Vertical Link Tool from the tool bar. Using the
same method, click and drag until a vertical link is created.

 Horizontal and Vertical links snap to grid locations and can only be started and stopped at one of
 these locations. Take care when connecting links to objects and function blocks that the link actually
 connects to the block and not just near it. If a link does not connect, then an error will occur when
 Verifying or Compiling the ladder diagram project. Figure 5-8 shows a connected link and a link that
 is not connected.

Figure 5-7

Placed Direct Coil
Placed Direct Contact

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 65

 When connecting two function blocks in series, where a variable output of the first needs to be
 connected to the second function blocks variable input, you must insert a variable between them.
 Failure to place a variable between function blocks (variable inputs and outputs only) will result in
 the ladder diagram project Compiling successfully, but it will not operate as intended.

Using Copy and Paste
EZ LADDER Toolkit, being a Windows based application, allows the copy and paste functions inherit to
Windows with certain limitations imposed. It is possible to copy any single or combination of objects, function
blocks, variables and links to the Windows Clipboard.

To Copy object(s), choose the Select Tool from the tool bar. To choose a single object, left click on the object
to select it. To select multiple objects, click and drag across the objects. Objects may be selected by hold-
ing the ctrl key while clicking on them. With the items selected, using the Edit Menu, choose Copy or
right-click and choose Copy. The objects are now copies to the Windows Clipboard.

Figure 5-8

Good
Connected
Links

Bad Link

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 66

Unlike a standard windows application, objects on the clipboard cannot be pasted using ctrl-v or by using
the Edit Menu’s Paste feature. To paste an object or multiple objects in EZ LADDER Toolkit, use the Select
Tool from the tool bar and hover the point at the location to paste (if pasting multiple objects, this would be
the top, left of the objects that will be pasted). Right-click and choose Paste. The objects will be pasted.

 When pasting objects or rungs, there must be enough room to paste the copied section (horizontally
 and vertically) or an error will occur. When pasting rungs, move the pointer near the left power rail
 as an pasting point.

Inserting and Deleting Rungs
During development of a ladder diagram project, it often becomes necessary to insert new rungs between
existing rungs or to delete rungs that will not be required.

Inserting Rungs

To insert a new rung in EZ LADDER Toolkit, position the pointer where the insertion needs to occur (typically
near the left power rail). Right-click and choose Insert Rung. A rung will insert at this location. All later
rungs will be moved accordingly and all cross references will update with the new rung numbers.

Deleting Rungs

To delete a rung, position the pointer on the rung to be deleted. Right-click and choose Delete Rung. The
selected rung will be deleted. Only empty rungs may be deleted.

Saving EZ LADDER Toolkit Projects
Saving an open ladder diagram project can be done two ways. Click the Save button on the tool bar or use
the File Menu, and choose Save. If the project has not been previously saved, a dialog box will appear to
enter name and save the project. The Save As selection in the File Menu always provides a dialog box for
naming the project.

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 67

Verifying and Compiling Ladder Diagrams
After a ladder diagram has been created, it must be verified and compiled prior to downloading it to an ac-
tual hardware target. This process checks the ladder diagram for adherence to all EZ LADDER Toolkit and
target rules and then creates a file that will be downloaded to the hardware target. This file, while main-
taining the functionality of the ladder diagram actually has no graphical representation and is generally not
recognizable or viewable.

To Verify a Project

The verification process will check the ladder diagram for completeness and common rules, verifying there
are not broken links, etc. To verify the ladder diagram project, on the tool bar, click the Verify button. In the
Output Window at the bottom, a message will be displayed with the status and results of the verification
process.

To Compile a Project

The compilation process involves two actions. The first is an automatic verification is done and if no prob-
lems are detected, the ladder diagram is then compiled (converted into machine language code for down-
loading to the hardware target). To compile a ladder diagram project, on the tool bar, click the Compile
button.

 All EZ LADDER Toolkit Projects must be compiled prior to downloading them to a hardware target.
 Once a program has been compiled, it does not need to be compiled again unless the actual ladder
 diagram project has changed since it was last compiled.

Any errors encountered during the compilation process must be corrected before the compilation will suc-
cessfully complete and provide operational compiled code. See Chapter 22 - Troubleshooting for common
error messages. Figure 5-9 illustrates two Output Window messages for the same ladder diagram project.
The first identifies errors during the compile process while the second illustrates a successful compile.

Figure 5-9

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 68

Bit Addressable Variables
As covered earlier in this chapter, variables are an important part of an EZ LADDER Toolkit project. While
most projects will use variables as described earlier, the EZ LADDER Toolkit also provides a feature to use
integer variables and then actually control the individual bits that make up the entire integer variable (num-
ber, total of 32 bits per integer). This feature is called Bit Addressable Variables.

Any integer may be used as a bit addressable variable. As a bit addressable variable, each variable has
32 individual bits that are numbered 0-31 and each bit represents the binary bit of the total integer variable
number. To understand bit addressable variables, you must have a basic understanding of the binary num-
bering system where numbers are created using ones and zeros in specific placeholder bits that represent
an actual number.

Setting the bit of a Variable

To set the bit of an integer variable, identify or create the variable. In addition to the variable that will be bit
addressable (the one you just identified), additional variables will be required to write to the bits of the origi-
nal bit addressable variable (one for each bit that you intend to use).

These additional variables will be (boolean) output variables, representing a boolean 0 or 1 for the actual bit.
In Figure 5-10, the Add Variable dialog box shows the creation of one of the actual bit controlling boolean
variables. These bit controlling variables are always set as Output and the Var I/O Number is the variable
name of the bit addressable variable and the bit number to control separated by a period. In Figure 5-10,
the bit addressable variable is named Limit and the bit shown being controlled is 3 or the placeholder for the
number 8 in integer form and the variable that is controlling the bit is named Bit3. Therefore, if Bit3 is true
then bit 3 of the variable Limit would be true, changing the value of the variable Limit by its placeholder value
(in this case 8).

Binary Bits: 0 0 0 1 1 0 1

Placeholder: 64 32 16 8 4 2 1 Add the placeholder numbers of bits with 1’s only

8 + 4 + 1 = 13

The integer variable value would be 13.

Bit Number (0-31): 6 5 4 3 2 1 0

Figure 5-10

Bit Controlling Output
Variable (Boolean) Name

Variable Type: Output

Name of the Bit Addressable
variable and bit number to be
controlled. Format is:

Name.BitNumber

Chapter 5 Creating Ladder Diagram Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 69

Reading the bit of a Variable

To read the bit of an integer variable, identify or create the variable. In addition to the variable that will be bit
addressable (the one you just identified), additional variables will be required to read to the bits of the origi-
nal bit addressable variable (one for each bit that you intend to use).

These additional variables will be (boolean) input variables, representing a boolean 0 or 1 for the actual
bit. In Figure 5-11, the Add Variable dialog box shows the creation of one of the actual bit reading boolean
variables. These bit reading variables are always set as Input and the Var I/O Number is the variable name
of the bit addressable variable and the bit number to read separated by a period. In Figure 5-11, the bit
addressable variable is named Limit and the bit shown being read is 3 or the placeholder for the number 8
in integer form and the variable that is reading and storing the bit is named RBit3. Therefore RBit3 will be
equal to the actual binary status (0 or 1) of bit 3 of the Limit variable.

Figure 5-11

Bit Reading Input Variable
(Boolean) Name

Variable Type: Input

Name of the Bit Addressable
variable and bit number to be
read. Format is:

Name.BitNumber

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 70

CHAPTER 6
Downloading and Running Projects

This chapter provides basic information needed to connect to hardware targets, download
ladder diagram projects and use real-time EZ LADDER Toolkit features.

Chapter Contents
Switching Modes in EZ LADDER Toolkit ...71

Monitor Mode Overview ..72

Connecting to a Target ..73

Connecting for the First Time to a New Target75

Downloading Ladder Diagram Projects to Targets76

Real-Time Features ...76

Chapter 6 Downloading & Running Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 71

Switching Modes in EZ LADDER Toolkit
EZ LADDER Toolkit is generally has two modes of operation. Up to this point, most of the time we have
been using the Edit Mode. The Edit Mode is used to open and close projects, configure targets, create lad-
der diagram projects, verify and compile them. The Monitor Mode is used to connect to hardware targets,
download ladder diagram projects, monitor their power flow in real-time and to work with target utilities.
Typically switching modes is done often during ladder diagram project development.

Switching to Monitor Mode

To switch to monitor mode, on the tool bar, click the monitor button. Refer to Chapter 2 - Navigation EZ
LADDER Toolkit for tool bar and buttons. EZ LADDER Toolkit will switch from the Edit Mode to the Moni-
tor Mode. While the ladder diagram workspace will appear similar, some tool bars and buttons will change
adding functionality for features only needed in Monitor Mode. Figure 6-1 shows EZ LADDER Toolkit in the
Monitor Mode.

 In addition to the tool bar changes, the Output Window is not available in the Monitor Mode as the
 program should be compiled in the Edit Mode prior to switching to the Monitor Mode.

Figure 6-1

Chapter 6 Downloading & Running Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 72

Switching to Edit Mode

When in the Monitor Mode, to switch back to the Edit Mode, on the tool bar, click the Edit button. EZ LAD-
DER Toolkit will switch from Monitor Mode to the Edit Mode. All Edit Modes standard tool bars, menus and
windows will reappear.

Monitor Mode Overview
While the Monitor Mode generally looks similar to the Edit Mode, the tool bars, menus and windows can dif-
fer greatly. Refer to Figure 6-2 for identification status fields.

The following descriptions are for buttons found on the Monitor Mode Tool Bar.

 Edit Mode. Switches EZ LADDER Toolkit to the Edit Mode.

Figure 6-2

Tool Bar Project Name
Project Version

Project Build #

Estimated Scan Time

Chapter 6 Downloading & Running Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 73

 Connect. Connects EZ LADDER Toolkit to the hardware target’s Programming Port.

 Disconnect. Disconnects EZ LADDER Toolkit from the hardware target..

` Download. Transfers the compiled ladder diagram project to the hardware target and saves
 the program in memory and starts executing the program. The program will remain until over
 written by a new downloaded program.

 Stop. Stops execution of the ladder diagram project on the hardware target.

 Go. Starts execution of the ladder diagram project on the hardware target.

 Target Information. Opens the a target information dialog that identifies the actual target
 version connected to EZ LADDER Toolkit and the current Target’s Name or Model Number.

 EEPROM Erase. This erases the EEPROM on the hardware target. The target must support
 EEPROM storage for this feature to function.

 EEPROM View/Set. This opens a window that allows viewing of the FRAM (if installed) and
 EEPROM (if installed). Based on other target features, it may be used to write data to the
 EEPROM (not FRAM).

 There is no UNDO when erasing or writing to the EEPROM. Once the EEPROM
 has been erased or over-written, all previous contents are lost. Take care in
 erasing / writing to the EEPROM as to not lose valuable data.

Connecting to a Target
To download a ladder diagram project to a hardware target, it must first be connected to in the Monitor
Mode. To successfully connect to a target, the Serial Port Settings in the Project Settings Window must
match your computers setup, the appropriate programming cable must be connected from the computer’s
serial port to the hardware target’s programming port and the hardware target must be turned on.

 In addition to the serial port, the target may be connected to (for programming) using Ethernet or
 Wi-Fi provided the actual hardware targets support Ethernet or Wi-Fi. As with the serial ports, the
 actual communications port (COM x port, Ethernet IP address or Wi-fi IP address) must be selected
 in the Project Settings window. Before the Ethernet or Wi-Fi may be used for programming, it must
 be configured on the actual hardware target using the serial port in the Bootloader. See Chapter 4 -
 Configuring Targets.

Chapter 6 Downloading & Running Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 74

To connect to target, click the connect button located on the tool bar. If an error occurs, check the Serial
Port Settings, cable and target. Also see Chapter 22 - Troubleshooting.

 When connecting to a target, the background of the workspace may change with watermark text
 identifying conditions such as when a different program is running than is open in EZ LADDER
 Toolkit.

When Target has no Project Loaded

If the target does not have a previously loaded ladder diagram project, then no dialog boxes will open when
the Connect button is clicked. The Status window typically will change to Waiting to identify that the connec-
tion is complete and the hardware target is waiting for a ladder diagram project to be downloaded. Figure
6-3 illustrates the status as described.

When Target has Different Project Loaded

If the ladder diagram project name of the project open in EZ LADDER Toolkit does not match the name of
the ladder diagram project that is loaded on the target, workspace background will change as shown in Fig-
ure 6-4. This warning can be caused because the projects differ or the project open in EZ LADDER Toolkit
was renamed or saved with a different name using the Save As since it was loaded on the target. Download-
ing the project will clear this watermark text shown.

When Target has the Same Project

If the ladder diagram project name of the project open in EZ LADDER Toolkit does match the name of the
ladder diagram project that is loaded on the target, two results can occur. If the build number (that automatic
number that increments each time a project is compiled, See Chapter 4 - Configuring Targets), is the
same as the build number of the project loaded on the target, no dialog boxes are displayed. The Status,
Program Name, Program Version, Build Number and Scan Time are updated. Now ladder diagram project
can be viewed in real-time.

Figure 6-3

Figure 6-4

Chapter 6 Downloading & Running Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 75

If the two build numbers differ, then the warning water mark test in Figure 6-5 is displayed. This text serves
as a warning that the two build numbers do not match. While this is usually caused by the ladder diagram
project being compiled again since it was downloaded, it also requires that you must download the new build
of the ladder diagram project to view it in real-time.

Connecting for the First Time to a New Target
To connect to a target, the target must have a kernel installed. As hardware targets are shipped from the
factory without kernels, the kernel must be loaded prior to being able to connect and download projects.
When trying to connect to a new target for the first time (if it is configured correctly and successful), the Boot-
loader Window automatically is displayed. From this window, the kernel can be selected and installed on the
hardware target. Figure 6-6 illustrates the Bootloader window. Refer to Chapter 4 - Configuring Targets
for details on installing and upgrading the hardware target kernel.

Figure 6-6

Figure 6-5

Chapter 6 Downloading & Running Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 76

Downloading Ladder Diagram Projects to Targets
When connected to a hardware target, click the download button located on the tool bar. A dialog box will
temporarily be displayed showing the status of the ladder diagram’s download to the target and the Status
field will indicate Downloading.

Upon completion of the download, the Status field will update and indicate Running. The target has now
been programmed with the ladder diagram project. A download action causes the project to download, for
the project to be saved in the target’s non-volatile memory and then it is given a execute command to begin
running on the target.

The project is now executing on the hardware target. The status of contacts, coils, function blocks, variables
and power flow may be viewed in real-time.

 Disconnecting from the target or changing to Edit Mode does not stop the target from operating as it
 can only be stopped by removing power or the use of the Stop button in the Monitor Mode.

 It is important that all ladder diagram projects be archived for safe keeping. There is no method to
 recover a ladder diagram project from the target. The actual ladder diagram file must be available for
 editing and future downloads.

Real-Time Features
When connected to a hardware target with an executing program, there are additional real-time monitoring
features available in the EZ LADDER Toolkit. These features include Power Flow indication, Scan Time,
Starting and Stopping program execution, hover boxes and the ability to change variable values.

Power Flow Indication

Monitoring a project in real-time provides the ability to watch the state of contacts, coils, function blocks and
variables. See Figure 6-7. Contacts and Coils are actually represented in their current state (On / Off) by
color. Blue represents the contact or coil in it’s rest state (un-powered state) while Red represents a pow-
ered or flow condition. As real world and internal objects change during program execution, they are repre-
sented in color accordingly and the flow of power can be viewed (Power Flow) from the left power rail to the
right power rail).

 Although contacts and coils change colors based on their actual state, some links may change
 color, but most links and all function blocks remain the standard black and white color.

Chapter 6 Downloading & Running Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 77

Scan Time

Scan time is calculated in real-time, updated and displayed in the Scan Time Field. The scan time is always
represented in milliseconds. The scan time resolution is target specific. For more information on scan time,
please see Chapter 3 - Ladder Diagram Basics.

Starting and Stopping Program Execution

The program on the target can be stopped and started again using the EZ LADDER Toolkit when in Monitor
Mode and connected to the target.

 To Stop a program from executing on the target, on the tool bar, click the Stop button. This can be
 useful when troubleshooting and diagnosing ladder diagrams that do not operate as expected.

 To Start a program executing on the target, on the tool bar, click the Go button. This can be
 useful when troubleshooting and diagnosing ladder diagrams that do not operate as expected.

Red Indicates
Power Flow

Blue Indicates
No Power Flow

Figure 6-7

Chapter 6 Downloading & Running Projects

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 78

Hover Boxes

Another useful feature that can be utilized in real-time monitoring is the use of hover boxes. When the
mouse pointer is hovered over an object, a hover box will appear that provides additional information in re-
gards to the function or object including it’s name and current status. Figure 6-8 shows a typical hover box.
The mouse pointer is located over the contact CR2. Notice the hover box is now shown and identifies the
contact by name, type and it’s current state or value.

Changing Variable Values

EZ LADDER Toolkit provides an option for changing the value of a variable while the ladder project is ex-
ecuting. Double-click on the object and an dialog box appears with the current state or variable value. This
box is changeable and the value may be changed. Change the value as needed and click ok. The changes
take place immediately. The change does not affect the actual ladder diagram (in the Edit mode), only the
executing program. This is helpful for adjusting timer and counter values in real time during debugging.

 Changing a contact variable (boolean) does not always have the desired effect. For example: If the
 value of an internal coil (that is connected to a real world input) is changed using the dialog box, the
 actual value will change only until the next scan and then will revert to its real world status. Since all
 I/O status is re-evaluated each scan, the contacts and coils are updated and will override variable
 changes. Actual real world inputs cannot be changed at all.

 Changing any variable value in real-time does not change the ladder diagram project. Changes that
 wish to be kept must be manually changed in the project in the Edit Mode. Additionally, any variable
 changes on the target are lost if the target is stopped, started or power is reset to it.

Figure 6-8

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 79

CHAPTER 7
Retentive Variables & EEPROM Memory

This chapter provides basic information to understand what Retentive variables are, when
to use and how to use them including their limitations. EEPROM installation and use is
also provided.

Chapter Contents
What is a Retentive Variable ...80

How to Make a Variable Retentive..80

Retentive Variable / Memory Limitations...81

Configuring Retentive Memory in the Project Settings82

EEPROM Memory Overview ...83

Installing EEPROM Functionality ...84

Using EEPROM Memory ...85

FRAM used as EEPROM ...86

Chapter 7 Retentive Variables & EEPROM Memory

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 80

What is a Retentive Variable
A Retentive variable is a variable that’s value is automatically stored in non-volatile memory in the event of a
power interruption on the hardware target. When power is restored, retentive variable values are automati-
cally read from the non-volatile memory and re-loaded into their original variable.

Retentive variables are used often to recover from a power interruption and continue the process that is be-
ing controlled without initializing the process or wasting materials.

 The hardware target must support Retentive Variables for this feature to work. Adding retentive
 variables to a ladder diagram project alone does not guarantee retentive functionality. The actual
 hardware target must support and be configured to used retentive memory.

How to Make a Variable Retentive
For a variable to be retentive, it must be identified as retentive. To identify a variable as retentive in the Edit
Mode, click the Edit Vars button located on the tool bar. Select the variable that is to be retentive. Click the
edit button. The Edit Variable dialog will appear as in Figure 7-1.

To make the variable retentive, click the Retentive check box and click ok. The variable is now retentive and
will be stored in the event of a power interruption provided the actual target supports the retentive feature.
The same check box is present when creating a new variable.

 The target must be configured in the Project Settings to use retentive memory before any variables
 may be set as retentive. The Retentive check box will not appear until the retentive project settings
 are configured.

Figure 7-1

Check box to
make variable
retentive

Chapter 7 Retentive Variables & EEPROM Memory

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 81

Retentive Variable / Memory Limitations
While retentive variables and functionality can be a useful tool when creating ladder diagram projects. There
are limitations to when retentive variable usage.

As was discussed previously, retentive variables are stored in non-volatile memory (memory that retains
data without power) and that retentive variable functionality is target dependent. The actual target must have
non-volatile memory capability and the capability to detect a loss of power before power drops below the op-
erating range for the target. In other words, the target must be able to sense the loss of power early enough
to provide the time needed to write the retentive variables to the non-volatile memory while the target’s input
power is still sufficient for proper operation.

 If designing a custom product using the P-Series PLC on a ChipTM Integrated Circuit or Module, this
 functionality is based on the use of the active low LOW_VOLT_SENSE pin input (Integrated Circuit
 Pin: 130). This pin must be connected to a circuit that can detect the loss of power early enough to
 allow the completion of the Retentive memory write
 cycle.

 For Retentive memory, the P-Series PLC on a ChipTM generally requires an external FRAM
 technology device. This device connects to the PLC on a Chip using its I2C ports. Please refer to the
 PLC on a Chip P-Series Data Sheets for details on the retentive memory requirements
 and the FRAM connections.

 The internal (P-Series PLC on a Chip) EEPROM memory is a configurable option for selecting the
 location to store retentive memory. Generally, the on-board chip EEPROM should not be used for
 retentive memory storage as the on-board EEPROM memory is too slow to allow sufficient time
 to complete the retentive write cycle.

 Some targets may be able to use the EEPROM for retentive memory for some number of variables.
 The actual amount that would write correctly would need to be determined by testing. Custom
 (customized) targets may be designed to use this on-board EEPROM provided the power is held
 long enough and the loss of power is detected early enough to complete the write cycle for the
 number of bytes needed as retentive.

 The PLC on a Chip / EZ LADDER Toolkit supports multiple FRAM devices that in turn provide
 different size memory. Connected FRAM device memory is split into Retentive and EEPROM
 storage. The amount of this FRAM specified for Retentive is configured in the hardware target’s
 Project Settings. Regardless of the memory size for Retentive, the hardware must support a loss of
 power detection and have sufficient power supply to allow enough time for the Retentive Memory to
 write successfully.

Chapter 7 Retentive Variables & EEPROM Memory

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 82

Configuring Retentive Memory in the Project Settings
To configure the Retentive Memory, use the Project Menu and click Settings. The Project Settings Window
/ Dialog box will open. Click the Properites button. See Chapter 4 - Configuring Targets for more details on
target configuration menus. The Target Properties window will open. Located in the Devices pane, the Low
Voltage Sense should be listed under Internal and under the Bus, the I2C, I2C port and FM24XXX should be
listed. Both these items are required for retentive memory to operate correctly. If these devices are not pres-
ent, they must be installed. See Chapter 4 - Configuring Targets.

Click on the FM24XXX (highlight) and click the properties button. The Ramtron FM2xxx Properties dialog
will open. This dialog is used to configure the Retentive Memory. See Figure 7-2.

 When configuring for PLC on a ChipTM, select the I2C port from the I2C Port drop-down menu and
 the FRAM part number from the Part Number drop-down. The Device Select should be 0 and the
 Size is based on the actual FRAM part number.

 If the target automatically configures the FRAM device, these settings are preset.

The number of bytes on the device is divided into Number of Retentive Bytes (Num Retentive Bytes) and the
Number of User Bytes (Num User Bytes). The Num Retentive Bytes are where retentive variables are stored
on power loss. The Num User Bytes are used for the program to store information using the EEPROM_
WRITE and EEPROM_Read function blocks.

 To set the amount of retentive memory, in the Num Retentive Bytes box, enter the desired number of
 bytes that should be retentive, up to the maximum allowed for the device. The Num User Bytes is
 automatically recalculated and updated based on the value you enter for Num Retentive Bytes.

When the Retentive memory has been configured, click ok to close the Ramtron FM24xxx Properties box.
Click ok to close the Target Properties window and click ok to close the Project Settings Window. Be sure to
save the ladder diagram project (program) after making any changes to the Target Settings.

 To configure the on-chip EEPROM memory to be used as retentive memory, refer to the Installing
 EEPROM Functionality heading in this chapter of the manual.

Figure 7-2

Chapter 7 Retentive Variables & EEPROM Memory

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 83

 Selecting the Retentive Memory Type
The hardware target can only use one of the retentive memory types (EEPROM or FRAM). As such, it must
be configured to identity the memory type. From within the Project Settings, inside the targetXXXX’s Proper-
ties window, select the Low Voltage Sense (under internal) and click the properties button. See Figures 7-3
and 7-4.
Using the drop-down menu, select either the FM24XXX for the FRAM device or the PLCHIP_Pxx_eeprom
device for the retentive storage memory to use.

 For retentive storage, only one memory type may be selected for all retentive variables to be stored.

Click ok the number of times necessary to store your selection and close any open dialog windows. Be sure
to save the program.

EEPROM Memory Overview
EEPROM memory is a non-volatile memory (meaning its values are kept in the event of a power loss) that
may be used to store data from variables. The data may be stored and retrieved as needed. The EEPROM
memory is ideal for storing operational parameters of a program that don’t change regularly but need the
ability to change.

 EEPROM memory is not suited for storing values or data that changes rapidly and must be stored at
 each change. EEPROM technology provides a limited number of write cycles to an EEPROM
 location before it will fail. This number of writes before failure is large (from hundreds of thousands to
 millions) and does not pose any issues for items that change occasionally; however, if a process
 were to try and write once per second, the number of writes would exceed the life of the EEPROM
 much faster. Retentive Variables and memory is better suited for rapid and repeated writes.

Figure 7-3 Figure 7-4

Chapter 7 Retentive Variables & EEPROM Memory

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 84

Installing EEPROM Functionality
For P-Series based PLC on a Chip targets, the EEPROM functionality may or may not be automatically
installed based on the actual hardware target. If the target automatically installs the EEPROM functionality,
then no other configuration is required.

 If the EEPROM_READ and EEPROM_WRITE function blocks are in the function block drop down
 list, then the EEPROM functionality is installed and may be used.

If the EEPROM functionality is not installed and it is required for a ladder diagram project, it must be installed
before the EEPROM may be utilized.

To install the EEPROM device (some target knowledge is assumed, refer to the hardware target’s user
manual) follow these basic steps. A VB-2000 is used as the example hardware target. All others will install
similarly.

1. In EZ LADDER, from the File Menu at the top, click PROJECT then SETTINGS. This will open the
 Project Settings Window. Select the target from the choices (the VB-2000 is used in this example).

2. Click the PROPERTIES button to the right side of the window. The target (VB-2000) Properties
 Window will open. Make sure the proper model (Part Number) is selected in the drop-down menu.
 Refer to Figure 7-3

3. Click the ADD DEVICE button. The PLCHIP-PXX Devices window will open. Locate the
 PLCHIP_Pxx_eeprom in the Devices pane of this window. Refer to Figure 7-4.

4. Click the PLCHIP_Pxx_eeprom device (highlight) and click OK.

5. The PLCHIP_Pxx_eeprom Properties window will open. This window is used to configure the number
 of EEPROM bytes to be blocked for retentive memory use only. See the Retentive Memory / Memory ‘
 Limitations part of this manual section for details on how and when EEPROM may be used for
 retentive. Refer to Figure 7-5. Leave the Num Retentive Bytes set to zero unless you are planning to
 use the EEPROM for retentive memory storage.

6. The PLCHIP_Pxx_eeprom is now listed as an internal device in the Devices Pane. Click OK to close
the VB-2XXX Properties.

7. Click OK to close the Project Settings Window.

8. Save your ladder diagram using the menu FILE and SAVE or SAVE AS to save the current settings in
your program.

The EEPROM functionality is now installed in the ladder diagram program. The EEPROM_WRITE and EE-
PROM_READ function blocks should now be available in the function block drop down list.

Chapter 7 Retentive Variables & EEPROM Memory

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 85

Figure 7-5 Figure 7-6

Using EEPROM Memory
EEPROM memory is accessed by using the EEPROM_WRITE and EEPROM_READ function blocks. The
EEPROM_WRITE and EEPROM_READ function blocks use variables to set the EEPROM address.

To write and read values from the EEPROM, you must understand that the EEPROM memory is basically a
bank of memory and the variable values may be stored into this bank. The EEPROM bank is organized by
per byte and each variable type has a specific number of bytes that it will require. Boolean variables fill one
byte while all other variable types fill four bytes of EEPROM.

 EEPROM based on its design does have a limited life based on number of write cycles. This number
 is generally large, EEPROM is not recommended for storage where values are changing and stored
 often (seconds or minutes). It would be appropriate for configuration items stored randomly and
 items stored at slow rates.

Figure 7-7

Chapter 7 Retentive Variables & EEPROM Memory

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 86

Refer to Appendix A - Function Reference for details on using the EEPROM_READ and EEPROM_
WRITE function blocks.

FRAM used as EEPROM
When configuring Retentive Memory (see earlier this Chapter), the NumUser Bytes are automatically cal-
culated based on the number of retentive bytes configured. The NumUser Bytes are memory locations in
FRAM that may be used to store data just as in the EEPROM using the EEPROM_WRITE and EEPROM_
READ function blocks.

 The FRAM memory locations, as they are not based on EEPROM technology do not have the
 write cycle limitations. FRAM locations will not fail after repeated write cycles; therefore, they are
 appropriate to use in any situation.

 When using the EEPROM_READ or EEPROM_WRITE function block, ensure you select the
 correct device from the drop down menu (the menu is available when placing the function blocks in
 the ladder diagram). The FMXXX devices are FRAM devices while the PLCHIP_Pxx_eeprom is the
 actual PLC on a Chip EEPROM.

EEPROM ADDRESS LOCATION
Variable & Type 0 1 2 3 4 5 6 7 8

Variable 1 (Boolean)
Variable 2 (Integer)
Variable 3 (Boolean)

Variable 1 Address - Boolean (1
byte) uses location 0

Variable 2 Address - Integer (4
bytes) uses location 1,2,3 and 4.

Variable 3 Address - Boolean (1
byte) uses location 5.

The address provides the location where to store the variable or from where to read the data into a vari-
able from. The actual address is the first byte location of the EEPROM memory. Each EEPROM address is
absolute and is one byte in size. To correctly store and read variables (of the same or different type), they
must be mapped based on the starting byte location (address) and the number of bytes to store or read for
the variable type.

 When writing a boolean to address 0, the actual variable will use addresses 0 (one byte).
 Should you write an integer variable into address 0, then it would use addresses 0-3 (4 bytes). A
 memory map should be created and used to assign variable types and addresses prior to coding to
 ensure that variable size and types are accounted for.

 You must use the same address for writing and reading a variable for correct operation. If the
 addresses are not the same and/or you have overwritten some bytes of where a value is stored, the
 data read will be corrupted.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 87

CHAPTER 8
Pulse Width Modulation

This chapter provides basic information to understand what Pulse Width Modulation is and
how it is used as feature in the EZ LADDER Toolkit and hardware target.

Chapter Contents
What is Pulse Width Modulation ..88

PWM Output Basics ..88

Configuring PWM in Project Settings ..89

Controlling PWM in the Ladder Diagram Project90

Chapter 8 Pulse Width Modulation

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 88

What is Pulse Width Modulation
Pulse Width Modulation, also referred to as PWM is a term common to the industrial controls and electronics
industries. Essentially PWM is generally an output that can be controlled in such a manner that will cause a
device connected to have varying operation. Consider a light dimmer, changing the knob changes the light
intensity; this is how a PWM output can affect a load such as a light.

Pulse-width modulation (PWM) is used for controlling the amplitude of digital signals in order to control
devices and applications requiring power or electricity. It essentially controls the amount of power, in the
perspective of the voltage component, that is given to a device by cycling (known as the frequency) the
on-and-off phases of a digital signal quickly and varying the width of the “on” phase or duty cycle. To the
device, this would appear as a steady power input with an average voltage value, which is the result of the
percentage of the on time. The duty cycle is expressed as the percentage of being fully (100%) on. The
frequency is express in hertz (hz). Figure 8-1 illustrates an example PWM output waveform.

PWM Output Basics
Pulse Width Modulation (PWM) Outputs for P-Series targets are easy implement and utilize using the EZ
LADDER Toolkit. PWM channels are 32 bit resolution and up to 12 channels are available based on the
actual hardware target.

 PWM functionality, supported types and number of channels is always target dependent. While EZ
 LADDER Toolkit provides the basic programmability, the hardware target must support PWM and the
 selected configuration for the PWM outputs to operate correctly.

 PWM output frequency is dependent upon the actual hardware target and the resolution configured.
 Changing the resolution (or hardware target) may change the acceptable range of the PWM outputs.

Figure 8-1

Fixed Frequency
50% Duty Cycle

PWM OUTPUT
CHANNEL

Fixed Frequency
25% Duty Cycle

Fixed Frequency
75% Duty Cycle

Chapter 8 Pulse Width Modulation

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 89

Configuring PWM in Project Settings
As with most EZ LADDER Toolkit hardware supported features, the PWM channels and functionality must
installed and configured before it may be used in a ladder diagram project. The PWM channels are config-
ured using the Project Settings. Using the Project Menu, choose Settings. The Project Settings window
will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. If PWM is already
listed in the Devices pane, you can select it (highlight) and click the properties button to make additional
configurations to the PWM. If the PWM is not listed in the Devices pane, it must be installed and configured.
Figure 8-2 shows no installed devices.

To install the PWM, click the add device button. The Devices window will open. Choose PWM from the de-
vices (click to highlight) and then click ok. The PWM Properties window will open. See Figure 8-3.

Click the add button, the Add PWM Channels dialog will open. Select the channel(s) and click ok to add
them.

 There are up to 12 channels available based on the target. Channels 0-5 operate on a base PWM
 frequency and channels 6-11 operate on a different base PWM frequency. These frequencies are > 0
 Hz and up to 10 MHz. Enter the base frequency desired for the channels that have been added.
 Click ok to close the PWM Properties window, click ok to close the Target Properties window and
 click ok to close the Project Settings window. Be sure to save the ladder diagram project (program).

Figure 8-2

Chapter 8 Pulse Width Modulation

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 90

 The actual PWM base frequency will be application dependent. The PWM frequency can be changed
 in the ladder diagram program using the PWM_FREQ function block.

Controlling PWM in the Ladder Diagram Project
With PWM channels configured in the Project Settings, it is simple to control the actual PWM channels in the
ladder diagram project.

Enabling a PWM Channel

To control a PWM output, specifically when it is enabled, disabled and it’s duty cycle, the PWM function
block is used. This function block has two inputs (EN for Enable and DC for Duty Cycle) and also has one
output (Q). When the PWM function block is enabled (the EN input is true), the PWM channel is active and
operating at the frequency defined in the project settings and the Duty Cycle (variable connected to DC of
the PWM function block). When the EN input is false, the PWM channel output is disabled. Figure 8-4 illus-
trates the PWM function block in a sample circuit.

 When placing the PWM function block, a new dialog is opened to select the PWM channel and the
 polarity of the PWM Channel.

Figure 8-3

Chapter 8 Pulse Width Modulation

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 91

Controlling the PWM Channel Duty Cycle

The PWM output’s duty cycle is controlled the PWM function block for that channel. Changing the value
of the variable connected to the DC input of the PWM function block immediately changes the duty cycle
accordingly. This gives a PWM output the ability to change duty cycle in real-time in response to control
parameter changes.

Changing the PWM Frequency

In addition to an adjustable duty cycle, the PWM clock frequencies (CLK A / CLK B) can be changed in the
ladder diagram project by use of the PWM_FREQ function block. The PWM_FREQ function block has two
inputs (EN for enable and F for frequency) and one output (Q). When the EN is true, the PWM channel
frequency is changed to the value of the variable connected to the F input of the function block. Figure 8-4
illustrates a sample circuit using PWM_FREQ.

 When using the PWM_FREQ to change the frequency, the actual CLK A or CLK B frequency is
 changed. This affects all channels that use that specific CLK signal. For example, if PWM channel
 0 uses CLK A and PWM channel 2 uses CLK A, then adjusting the frequency using PWM_FREQ to
 CLK A affects all the PWM channels that use CLK A, in this case 0 and 2 respectively.

 When placing the PWM_FREQ function block, a new dialog is opened to select the PWM channel
 Clock.

The PWM clock frequency will be equal to the value of the F input of the PWM_FREQ function block, thus
allowing real-time frequency changes.

Figure 8-4

Figure 8-5

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 92

CHAPTER 9
LCD Display Support

This chapter provides basic information to understand how to install, configure and use a
Character or Graphics LCD Display with the EZ LADDER Toolkit

Chapter Contents
Character (CHR) LCD Display Functionality ...93

Configuring the CHR LCD Display in the Project Settings93

Displaying Messages on the CHR LCD Display94

Graphics (GFX) LCD Display Functionality ...97

Configuring the GFX LCD Display in the Project Settings98

Displaying Items on the GFX LCD Display ..99

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 93

Character (CHR) LCD Display Functionality
EZ LADDER Toolkit provides the ability to display text and variables using it’s built-in LCD support. EZ
LADDER Toolkit supports LCD displays that meet the HD44780 interface specification. In addition to the
specification, the displays must have 1 to 4 rows and 8-40 columns.

 LCD support is based on actual hardware target specifications. PLC on a ChipTM Integrated Circuits
 and Modules support LCD display functionality. For PLCs and controllers, refer to the supported
 features. See Chapter 23 - Hardware Targets.

 EZ LADDER Toolkit supports only one character LCD display or one graphics LCD displayin a ladder
 diagram project.

Configuring the CHR LCD Display in the Project Settings
To be able to use an LCD display in an EZ LADDER Toolkit ladder diagram project, the LCD display must
first be installed and configured. The LCD display is configured using the Project Settings.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN) , select the actual part number (if not already done). In the Device section of the De-
vices Pane, if the LCD is installed, it will be displayed. To install the device, click the add device button. The
Target Devices window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
LCD. Figure 9-1 shows the Target Devices window.

Figure 9-1

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 94

Click LCD and click ok. The LCDpropertiesForm dialog will open. using this dialog set the number of Rows
(1-4) and the number of Columns (8-40). Click OK when the LCD properties are entered to close the dialog
and return to the Target Properties Window. You will now see the LCD listed in the Devices pane. See Figure
9-2 for setting the rows and columns.

Click the ok button to close the Target Properties window and click ok to close the Project Settings window.
Be sure to save the ladder diagram project (program).

The LCD display can now be utilized from the ladder diagram project.

Displaying Messages on the CHR LCD Display
With the LCD display configured in the ladder diagram project, it is now possible to use the EZ LADDER
Toolkit’s function blocks to display messages and variables. Two basic function blocks that are used control
the display are: LCD_CLEAR and LCD_PRINT. The LCD can also be printed to and controlled using struc-
tured text.

Clearing the Display

To clear the LCD display (blank all rows and columns), the LCD_CLEAR function block is used. The LCD_
CLEAR will clear the display when it senses a rising edge on it’s enable input (EN). Figure 9-3 shows an
example program using the LCD_CLEAR function block.

Figure 9-2

Figure 9-3

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 95

Writing to the Display

To write messages to the LCD Display, the LCD_PRINT function block is used. Using the LCD_PRINT func-
tion block is a two step process. When placing the function block, a new LCD Print Properties dialog box will
open. See Figure 9-4. The Text field is where the message is typed that will be displayed. The Row field
is the row of the display where the text will be displayed. The Column field is the column where the text will
begin displaying.

 The first row and first column are always zero (0) and are limited by the actual hardware target
 display size. If text in a row is more than can be displayed on the LCD, it will be truncated. It does
 not automatically wrap to the next line. Each row of the display must be written to individually with
 separate LCD_PRINT function blocks.

When all the information is entered, clicking ok will cause the function block to be placed in the ladder dia-
gram project. Figure 9-5 is a sample of a complete LCD_PRINT circuit.

Writing Variables to the Display

In addition to printing static text, it is often desirable to be able to print variables to the display. This is helpful
in displaying process parameters and menu items. To write a variable to the LCD display, the same LCD_
PRINT function block is still used. As in the simple text printing, the text is entered into the Text field.

Figure 9-4

Figure 9-5

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 96

In addition to the text, control characters may be inserted that represent variables and how to format the
variable text. For a full listing of what control characters and formatting is supported, please see the LCD_
PRINT function block in Appendix A - Function Reference. Figure 9-6 illustrates a sample text dialog with
control characters.

 When an LCD_PRINT function is inserted to display variables, a new variable input is added to the
 function block automatically for each variable that will be displayed.

Figure 9-7 represents a sample ladder diagram project using a LCD_PRINT function block with a variable
input that will be displayed.

 The LCD_PRINT function block is rising edge sensitive. Therefore, it will only display one time as
 the ENable input goes high. The text will appear normally, but the variable will not appear to update
 or change as the ladder diagram is executing.

 To overcome the rising edge issue when displaying variable, create TON timer circuit as shown in
 Figure 9-8 and use the timer contact to act as a refresh for the ENable input on the LCD_PRINT
 function block. The refresh timer should be adjusted to your display preferences. in Figure 9-8,
 CR1 will toggle on and off based on the Timer function TON, giving the result of the LCD_PRINT
 seeing a rising edge at that timing rate.

Figure 9-6

Figure 9-7

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 97

 For more detail on all EZ LADDER Toolkit Function Blocks and objects, refer to Appendix A -
 Function Reference.

Graphics (GFX) LCD Display Functionality
EZ LADDER Toolkit provides the ability to display graphics, multiple sized text and variables using it’s built-in
Grpahics LCD support. EZ LADDER Toolkit supports specific graphics LCD displays.

The following graphics LCD displays are supported:

 Crystal Fontz part number: CFAG12864A-xxxx
 New Haven part number: NHD-12864AZ-xxxx
 xxxx are optional items in the part number for specifying features.

 Graphics LCD support is based on actual hardware target specifications. PLC on a ChipTM
 Integrated Circuits and Modules support LCD display functionality. For PLCs and controllers, refer to
 the supported features. See Chapter 23 - Hardware Targets.

 EZ LADDER Toolkit supports only one character LCD display or one graphics LCD displayin a ladder
 diagram project.

Figure 9-8

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 98

Configuring the GFX LCD Display in the Project Settings
To be able to use a graphics LCD display in an EZ LADDER Toolkit ladder diagram project, the graphics
LCD display must first be installed and configured. The graphics LCD display is configured using the Project
Settings.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the
drop-down menu (DCPN) , select the actual part number (if not already done). In the Device section of the
Devices Pane, if the GFX LCD is installed, it will be displayed. To install the device, click the add device
button. The Target Devices window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
GFX LCD. Figure 9-9 shows the Target Devices window.

Click GFX LCD and click ok. The Gfx Lcd Properties dialog will open. Using the Display drop-down, select
the graphics display being used from the supported list. Additional fields will now display that are required
configuration items before the GFX LCD display can be added to the project. Refer to Figure 9-10.

 Display Size: Automatically updated with the size of the display (W for width, H for height).

 Reset Pin: Select the PLC on a Chip GPIO pin connected to the graphics display’s reset pin. For
 controllers with built-in graphics support, this featue is automatically populated or
 limited in choices.

 CS1 Pin: Select the PLC on a Chip GPIO pin connected to the graphics display’s CS1 (chip
 select 1) pin. For controllers with built-in graphics support, this featue is automatically
 populated or limited in choices.

 CS2 Pin: Select the PLC on a Chip GPIO pin connected to the graphics display’s CS2 (chip

Figure 9-9

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 99

 select 2) pin. For controllers with built-in graphics support, this featue is automatically
 populated or limited in choices.

Click OK when the GFX LCD properties are entered to close the dialog and return to the Target Properties
Window. You will now see the GFX LCD listed in the Devices pane.

Click the ok button to close the Target Properties window and click ok to close the Project Settings window.
Be sure to save the ladder diagram project (program).

The GFX LCD display can now be utilized from the ladder diagram project using Structured Text.

 Due to the graphical nature of the GFX LCD display, the ability to size fonts and display images, the
 GFX LCD display can only be controlled and printed to using Structured Text using Target specific
 functions in the structured text editor.

Displaying Items on the GFX LCD Display
Due to the graphical nature of the GFX LCD display, the ability to size fonts and display images, the GFX
LCD display can only be controlled and printed to using Structured Text using Target specific functions in the
structured text editor. Each function provides control over some printing aspect.

Graphics LCD Display Layout
To control printing graphics and text to the display, the first step is identifying the graphics’ display layout.
When the display was selected in the Project Settings, the Display Size provided a W (width) and H (height)
value. See Figure 9-10. These are the maximum number of pixels supported in each of the directions and
always print from 0 to the (maximum -1) location in each direction. Location 0,0 is always the top left-hand
corner of the GFX display. The locations is specified by width (x), height (y). Refer to Figure 9-11.

 Printing locations are specified using coordinates (x,y). X for the horizontal and y for the vertical. The
 top left-hand corner is always location 0,0.

Figure 9-10

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 100

Displaying Overview
The GFX display has the ability to display different types of images and text based on the structured text
command used. These include lines, rectangles, images and text (including font size changes). Lines, rect-
angles and text are generated and displayed by the structured text commands while images are rendered
based on provided image files.

The following structured text commands are used to control / print to the graphics LCD display.

EZ_LcdClear
 This function erases / clears everything from the graphics LCD display.

EZ_LcdDrawImage
 This function draws an image on the graphics LCD display (from stored image files).

EZ_LcdDrawLine
 This function draws an line on the graphics LCD display.

EZ_LcdDrawRectangle
 This function draws an un-filled rectangle on the graphics LCD display.

EZ_DrawRectangleFilled
 This function draws a filled rectangle on the graphics LCD display.

EZ_LcdSetFont
 This function is used to set the font on the graphics LCD display. The only supported font is the de
 fault font at this time (6x8).

EZ_LcdSetFontSize
 This function is used to set the font size (scale) on the graphics LCD display.

EZ_LcdSetPixel
 This function is used to turn on/off a pixel on the graphics LCD display.

EZ_LcdWriteString
 This function is used to display text on the graphics LCD display.

0,0 128,0

128,640,64

Figure 9-11

Chapter 9 LCD Display Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 101

 For details on the structured text functions syntax and options, refer to Appendix B - Target Specific
 ST Function Reference. For more information on using structured text, refer to Chapter 26 -
 Structured Text.

Displaying Images
The GFX display has the ability to display pre-drawn images. These images must be stored in the same
directory as the ladder diagram project (.dld file). The images is drawn using the EZ_LcdDrawImage struc-
tured text function. These images are listed in the Variables tab of the Structured Text editor. Refer to Figure
9-12.

 The images to be drawn must be stored in the same directory as the ladder diagram project (.dld file).
 When in the correct location, the names will appear in the Variables tab of the Structured Text editor.

 Images may be cropped when displayed if there is not enough room to draw the entire image based
 on image size and placement location.

Fonts & Font Scaling
The GFX display has the ability to display scaled font sizes (and future releases may allow for different
fonts). The font size is drawn using the EZ_LcdSetFontSize structured text function. Fonts are listed in the
Variables tab of the Structured Text editor. The lcd_6x8 font is set by default and cannot be changed.

Figure 9-12

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 102

CHAPTER 10
Keypad Support

This chapter provides basic information to understand how to install, configure and use the
Keypad feature in the EZ LADDER Toolkit.

Chapter Contents
Keypad Functionality ..103

Configuring the Keypad in the Project Settings103

Getting Data from the Keypad ..104

Chapter 10 Keypad Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 103

Keypad Functionality
EZ LADDER Toolkit provides the ability for the addition of keypad functionality. EZ LADDER Toolkit supports
a basic 4 row, 5 column keypad matrix. This keypad matrix includes the numbers 0-9, Enter, Clear, Up,
Down, +/-, Decimal Point, and F1-F4 (programmable function keys). Using this keypad matrix and the built-
in EZ LADDER functions, menus and user interactions may be programmed into a ladder diagram project.

 Keypad support is based on actual hardware target specifications. PLC on a ChipTM Integrated
 Circuits and Modules support Keypad functionality. For PLCs and controllers, refer to the supported
 features, see Chapter 23 - Hardware Targets.

Configuring the Keypad in the Project Settings
To be able to use an keypad in an EZ LADDER Toolkit ladder diagram project, the keypad must first be in-
stalled and configured. The keypad is configured using the Project Settings.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If the keypad were installed, it would be
listed in the Devices pane under the Devices section. Click the add device button. The Target’s Devices
window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
Keypad. Figure 10-1 shows the Target’s Devices window.

Figure 10-1

Chapter 10 Keypad Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 104

Click Keypad and click ok. The Devices window will close and return to the Target Properties window. The
Device section will now list the Keypad as an installed device. Refer to Figure 10-2.

No additional configuration is required to begin using the Keypad. Click ok close the Target Properties win-
dow and click ok again to close the Project Settings window. Use the File Menu and Save the ladder dia-
gram project. The keypad matrix can now be utilized from the ladder diagram project

Getting Data from the Keypad
With the keypad configured in the ladder diagram project, it is now possible to use the EZ LADDER Toolkit’s
function blocks and objects to input user data and set points. The keypad can be read using two methods.
The two methods are: Integer and Real Variable entry using the Keypad Function block and the second is
identifying discrete key presses using contacts.

Real and Integer Inputs using the Keypad Function Block(s)

There are two Keypad function blocks provided for use in the ladder diagram program, Keypad and
Keypad2.

Using the KEYPAD Function

To read data (integer or real) from the keypad using the KEYPAD function block, select the KEYPAD func-
tion block from the drop-down menu and place it in the ladder diagram at the desired location. The Keypad
block will be inserted into the ladder diagram.

Figure 10-2

Chapter 10 Keypad Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 105

Each keypad function block has three inputs and three outputs. As with all function blocks, the EN (enable)
will enable the keypad function block or disable it. The MI and MA inputs are used to identify Minimum and
Maximum allowed entries respectively. The Q Output is true when the function is enabled. The KB output
will maintain the contents of the keypad buffer while KO is the actual value that was entered on the keypad
(and enter pressed). Figure 10-3 represents a typical keypad function in a ladder diagram project.

 The Keypad function block can be used to input real or integer variables. When connecting a
 variable, the type connected will limit all number inputs and outputs to the selected type (all integer
 or all real).

Using the KEYPAD2 Function

The KEYPAD2 function block provides additional features over the KEYPAD function block. These features
allow menus and Discrete key press menu items to be combined, allowing for a more powerful and easier to
implement menu.

To read data (integer or real) from the keypad using the KEYPAD2 function block, select the KEYPAD2 func-
tion block from the drop-down menu and place it in the ladder diagram at the desired location. The
KEYPAD2 block will be inserted into the ladder diagram.

Each KEYPAD2 function block has three inputs and six outputs. As with all function blocks, the EN (enable)
will enable the KEYPAD2 function block or disable it. The MI and MA inputs are used to identify Minimum
and Maximum allowed entries respectively.

The Q Output is true when the function is enabled. The KB output will maintain the contents of the keypad
buffer while KO is the actual value that was entered on the keypad (and enter pressed). The M output is a
boolean that is set to true when any number (0-9), + or . is pressed. Pressing the Clear or Enter will reset
the M output to false. The KP output is a boolean output that is true only for the single scan that a key was
pressed. The KY output is an integer output of the actual ASCII value of the key that was pressed.

Figure 10-4 shows the ASCII output for the key press detected.

Figure 10-5 represents a typical KEYPAD2 function in a ladder diagram project.

Figure 10-3

Chapter 10 Keypad Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 106

Figure 10-5

Figure 10-4

KEY ASCII Value KEY ASCII Value
0 48 F1 65
1 49 F2 66
2 50 F3 67
3 51 F4 68
4 52 UP 69
5 53 DOWN 70
6 54 ENTER 13
7 55 CLEAR 8
8 56 Decimal Point (.) 46
9 57 + / - 45

Reading Discrete Key Presses using Contacts

 Before being able to read any key presses using the Discrete key method, the ladder diagram must
 have at least one KEYPAD (or KEYPAD2) Function Block installed and in use. Any discrete keys will
 not operate unless one KEYPAD (or KEYPAD2) Function Block is installed in the ladder diagram
 project.

Chapter 10 Keypad Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 107

In addition to reading complete values from the keypad, it is possible to read individual keys to determine if
they are pressed. Each key has a predefined address that can be used as an input (boolean type variable
that is classified as an input). Create a contact as a new variable, and in the Var I/O Number field, enter the
address of the specific key desired. When the key is pressed, the contact will be true.

The following addresses are used to read discrete keypad buttons.

 I/O Assignment Button Description I/O Assignment Button Description

 KB_0 Numeric 0 KB_CLEAR Clear Button
 KB_1 Numeric 1 KB_DP Decimal Point Button
 KB_2 Numeric 2 KB_+- + / - Button
 KB_3 Numeric 3 KB_F1 F1 Button
 KB_4 Numeric 4 KB_F2 F2 Button
 KB_5 Numeric 5 KB_F3 F3 Button
 KB_6 Numeric 6 KB_F4 F4 Button
 KB_7 Numeric 7 KB_UP Up Button
 KB_8 Numeric 8 KB_DOWN Down Button
 KB_9 Numeric 9 KB_ENTER Enter Button

 For more detail on all EZ LADDER Toolkit Function Blocks and objects, refer to Appendix A -
 Function Reference.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 108

CHAPTER 11
UARTS and Serial Ports

This chapter provides basic information to understand how to install, configure and use the
UARTS, Serial Ports and to enable the Serial Printing feature in the EZ LADDER Toolkit.

Chapter Contents
UARTS & Serial Ports..109

Serial Print Functionality ..111

Installing / Configuring the Serial Print Device111

Printing Data to a Serial Device using a Serial Port114

Chapter 11 UARTS & Serial Ports

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 109

UARTS & Serial Ports

EZ LADDER Toolkit provides the software interface to bring P-Series hardware target’s communication ports
to life. These serial ports (name UARTS in EZ LADDER) may be used to communicate Modbus Master or
Slave, Print Serially to external devices and even transmit or receive data using Structured Text. For more
information about structured text, see Chapter 26 - Structured Text.

 The availability of UARTs (Serial Ports) is entirely dependent upon the actual target. For more
 information regarding hardware target support and features, see Chapter 23 - Hardware Targets.

Prior to using the UARTs in EZ LADDER Toolkit, the UART(s) must be installed and configured in the target.
The UARTs are configured using the Project Settings.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If any UARTs were installed, they would
be listed in the Devices pane under the Bus/Uart section. Click the add device button. The Target’s Devices
window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
the UARTS (UART1 - UART4). Figure 11-1 shows the Target’s Devices window.

Figure 11-1

Chapter 11 UARTS & Serial Ports

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 110

Select the UART required and click ok. The UARTx Properties dialog box will open. The parameters for the
UART are set in this dialog. See Figure 11-2.

Configure the UART by setting each of the parameters to your hardware and applications needs.

 Parity: Parity. Select from None, Even and Odd.

 Data Bits: Number of Data Bits. Select from 5, 6, 7 or 8.

 Stop Bits: Number of Stop Bits. Select from 1 or 2.

 Baud Rate: Baud Rate. Select from 9600, 19200, 28400, 57600 and 115200

 Comm Mode: Communications Mode. Select from RS232, RS422 or RS485. Select
 the type of communication interface. Communications Mode is subject
 to the actual hardware features available.

 RTS GPIO Pin: Request to Send GPIO. For RS485, a GPIO (output) is required to
 hand the transmit / receive pin on the RS485 transceiver. The
 connected GPIO to the transceiver should be specified here.

 Enable ST Buffers: Check box to enable the Transmit / Receive buffers for use with
 Structured Text. This must be enabled when using structured text UART
 functions.

 Receive Buffer Size: Receive Buffer Size for Structured Text. Enter the number of bytes
 to buffer.

 Transmit Buffer Size: Transmit Buffer Size for Structured Text. Enter the number of bytes
 to buffer.

When configured, click ok to close the UARTx Properties dialog and return to the Target Properties window.

Figure 11-2

Chapter 11 UARTS & Serial Ports

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 111

Click ok to close the Target Properties window and click ok to close the Project Settings window.

 The UART is now installed. The UART supports the use of Modbus Master, Modbus Slave, Serial
 Printing and Structured Text.

 The UART baud rate may be changed in the ladder diagram program by using the UART_SET_
 PROPERTY function block.

For Modbus Master / Slave, see Chapter 13 - Modbus Networking.
For Structured Text, see Chapter 26 - Structured Text.

Serial Print Functionality
EZ LADDER Toolkit provides the ability to serially print text and variables to other devices using a serial port.
This feature can be useful to send data to data loggers, displays and other devices. The serial print feature
utilizes a standard serial port (UART) that may be configured as RS232, RS422 or RS485 and can operate
with multiple baud rates.

 Serial Printing support is based on actual hardware target specifications. PLC on a ChipTM Integrated
 Circuits and Modules support Serial Printing functionality as well as do some standard Divelbiss
 PLCs and Controllers. For PLCs and controllers, refer to the supported features. See Chapter 23 -
 Hardware Targets.

Installing / Configuring the Serial Print Device
As with most features, the Serial Print feature must be installed and configured in the EZ LADDER Toolkit
before it may be used.

The Serial Print is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the part number / model number if not selected.

 Verify the UART to be used for serial printing is installed. The UART to be used must be installed
 prior to installing the Serial Printing device / feature. See Figure 11-3. If not installed, please see the
 UARTS & Serial Ports section of this Chapter.

Click the add device button. The Targets Devices window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
Serial Print. Figure 11-4 shows the Device Properties window.

Chapter 11 UARTS & Serial Ports

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 112

Figure 11-3

Figure 11-4

Chapter 11 UARTS & Serial Ports

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 113

Click Serial Print and click ok. The Serial Print Properties window will open. This window is used to configure
the Serial Print properties. See Figure 11-5.

Click the add button. The Add Uart dialog will open. Select the UART to use from the drop-down Uart menu
and enter the number of bytes to use for the buffer size for the UART. See Figure 11-6.

Click ok to close and save the Add Uart Dialog. The UART is now listed in the Uarts Box of the Serial Print
Properties window. Click ok to close the Serial Print Properties Window.

The targets Devices window will close and the previous target properties window will now list the Serial Print
as an installed device under the Device section.

Click ok close the Target’s properties and click ok again to close the Project Settings window. Use the File
Menu and Save the ladder diagram project. The Serial Print can now be utilized from the ladder diagram
project.

Figure 11-5

Figure 11-6

Chapter 11 UARTS & Serial Ports

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 114

Printing Data to a Serial Device using a Serial Port
With the Serial Print configured in the ladder diagram project, it is now possible to use the EZ LADDER Tool-
kit’s function blocks to serially transmit text and set points. To serial print, the SERIAL_PRINT function block
is used.

Transmitting Text Serially

To transmit using the serial port, the SERIAL_PRINT function block is used. Using the SERIAL_PRINT
function block is a two step process. When placing the function block, a new Serial Print Properties dialog
box will open. See Figure 11-7. The Text field is where the message is typed that will be transmitted.

When all the information is entered, clicking ok will cause the function block to be placed in the ladder dia-
gram project. Figure 11-8 is a sample of a complete SERIAL_PRINT circuit.

 The SERIAL_PRINT function block supports special control characters. See the SERIAL_PRINT
 function block in Appendix A - Function Reference.

Figure 11-7

Figure 11-8

Chapter 11 UARTS & Serial Ports

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 115

Transmitting Variables Serially

In addition to transmitting static text, it is often desirable to be able to transmit variables to another de-
vice. To transmit a variable using the serial port, the same SERIAL_PRINT function block is still used. As
in transmitting text, the text is entered into the Text field. In addition to the text, control characters may be
inserted that represent variables and how to format the variable text. For a full listing of what control charac-
ters and formatting is supported, please see the SERIAL_PRINT function block in Appendix A - Function
Reference. Figure 11-9 illustrates a sample text dialog with control characters.

 When a SERIAL_PRINT function is used to transmit variables, a new variable input is added to the
 function block automatically for each variable that will be transmitted.

 The SERIAL_PRINT function block is rising edge sensitive. Therefore, it will only transmit one time
 as the ENable input goes high. If data is required to be transmitted repeatedly, it must be
 programmed into the ladder diagram project as part of the ENable control on the SERIAL_PRINT
 function block.

 Every placement of a SERIAL_PRINT function block will use available RAM. For most
 ladder diagram projects, there is an more than enough RAM; however, ladder diagram projects with
 heavy memory usage functions could run short on RAM.

 For more detail on all EZ LADDER Toolkit Function Blocks and objects, refer to Appendix A -
 Function Reference.

Additional Serial communications is available using Modbus and Structured Text. For Modbus Master /
Slave, see Chapter 13 - Modbus Networking. For Structured Text, see Chapter 26 - Structured Text.

Figure 11-9

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 116

CHAPTER 12
Real Time Clock

This chapter provides basic information to understand how to install, configure and use the
Real Time Clock in the EZ LADDER Toolkit.

Chapter Contents
Installing the Real Time Clock ..117

Using the Real Time Clock ...118

Real Time Clock Sync with SNTP ..123

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 117

Installing the Real Time Clock
P-Series targets (targets based on P-Series PLC on a ChipTM) support the use of a Real Time Clock device.
Most P-Series based targets support an on-chip Real Time Clock. Additional real time clock devices may be
connected via an SPI port on the PLC on a ChipTM.

 Real Time Clock support is target dependent. The PLC on a ChipTM target itself supports on-board
 and SPI real time clock devices. Refer to other target’s user manuals or Chapter 23 - Hardware Tar
 gets for targets that support the real time clock. For proper operation the real time clock requires
 a battery and crystal. Standard product P-Series targets will include the battery and crystal as part of
 the product. When using the PLC on a ChipTM itself, the battery and crystal must be provided external
 to the chip itself.

Prior to using the Real Time Clock in EZ LADDER Toolkit, the Real Time Clock must be installed and config-
ured in the target. The Real Time Clock is configured using the Project Settings.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If the real time clock were installed, it
would be listed in the Devices pane under the Internal section. Click the add device button. The Target’s
Devices window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
the PLCHIP_Pxx_rtc. Figure 12-1 shows the Target’s Devices window.

Figure 12-1

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 118

Select the PLCHIP_Pxx_rtc and click ok. The real time clock will install and the Target’s Devices window will
close returning to the Target Properties Window. The real time clock will now be listed in the Devices pane.
Refer to Figure 12-2.

There are no additional configuration or setup required to use the real time clock. Click ok to close the Target
Properties window and click ok to close the Project Settings window. Be sure to save the ladder diagram
project. The real time clock is now ready to be used in the ladder diagram.

 The real time clock must have it’s time and date set before it can be used properly. The date/time can
 be set with different function blocks and in two formats: month, day, year, day of week, hour, minute,
 second or UTC time.

 Certain features, such as MQTT require the real time clock to be set as UTC time. If these features
 are used in the ladder diagram project, then the real time clock must be set to UTC time for proper
 operation. Function blocks are provided to read the real time clock as normal date and time from the
 UTC set real time clock.

Using the Real Time Clock
To use the real time clock in a ladder diagram project, functin blocks are used to set and read the date and
time. Structured text functions are also available to use for accessing the real time clock. Depending on the
features used in the ladder diagram project and your needs, the real time clock will either be set using nor-
mal time and date (month, day, year, day of week, hour, minute and second) or to UTC time.

Figure 12-2

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 119

Real Time Clock with Normal Date/Time
To use the real time clock with normal date and time (also considered local time) features, four function
blocks are provided. Two blocks (GETDATE and GETTIME) are used to read the current date and time from
the real time clock. The remaining two blocks (SETDATE and SETTIME) are used to actually set the date
and time on the real time clock. Figure 12-3 represents a ladder diagram program that will read the date and
time.

 When using features like SNTP or MQTT (VersaCloud M2M+IoT), the real time clock must be set
 using UTC Time (not Normal Date/Time). Setting to normal date/time when using these features will
 cause these features to not function properly.

 When using MQTT or SNTP, other function blocks and structured text are provided to read and set
 the date time using normal type data (hour, minute, etc) while the actual time is still kept in UTC time.
 Refer to the Real Time Clock Sync with SNTP section of this chapter for SNTP information. Refer
 the Real Time Clock as UTC Time section of the chapter for using the real time clock with UTC time.

The real time clock function blocks use variables as inputs (for setting date and time) and outputs for reading
date and time. These integer variables are global and may be used anywhere in the ladder diagram. Figure
12-4 represents a ladder diagram to set the date and time.

 The real time clock can be set as normal time/date using the function blocks or from within EZ
 LADDER Toolkit when connected and in Monitor Mode with the target. See Setting the Real Time
 Clock using EZ LADDER Utilities later in this chapter.

For more details on using the real time clock function blocks or additional function blocks, see Appendix A -
Function Reference.

 There are no structured text functions for setting or reading normal date/time of the real time clock.

Figure 12-3

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 120

 The real time clock can also be set from within EZ LADDER Toolkit when connected and in
 Monitor Mode with the target. See Setting the Real Time Clock using EZ LADDER Utilities later in
 this chapter.

 The real time clock will return the time/date kept internally using the GETDATE and GETTIME
 function blocks. These blocks will return the values either in normal time or UTC (based on the time/
 date that is actually written and kept in the real time clock.)

 The real time clock’s time/date can be set using the SETDATE and SETTIME function blocks. These
 blocks will set the values in the real time clock that are provided as the setpoints to them (normal
 time or UTC).

Real Time Clock with UTC Time
As mentioned earlier, some features (MQTT and SNTP) require the real time clock to be set using UTC time.
You may choose to use UTC time for other reasons such as easier data logging and data-mining (keeping all
time to UTC prevents dealing with time zones).

 The real time clock can be set to UTC time using the function blocks, using the SNTP feature,
 using structured text or from within EZ LADDER Toolkit when connected and in Monitor Mode with
 the target. See Setting the Real Time Clock using EZ LADDER Utilities later in this chapter.

UTC time can be set using the SETDATE and SETTIME function blocks and read using the GETDATE and
GETTIME function blocks, but three additional function blocks are provided that are used to set and read the
date time. These function blocks allow you to set the local date and time, but the actual time is stored in UTC
time. The function blocks read the UTC time from the real time clock and return the local date and time.

 When using UTC time from the ladder diagram to set and read the date / time, it is recommended
 that these function blocks be used: SETTZOFF, SETDTLOCAL and GETDTLOCAL.

Figure 12-4

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 121

 The SETTZOFF function block sets the time zone offset for the local time from UTC time. This value
 and function block must be ran before setting or reading the date/time using the SETDTLOCAL or
 GETDTLOCAL function blocks. This function must be ran each time the target (program) starts to set
 the time zone offset. The timezone offset is not stored as a value, but only used for conversion.

 The SETTTZOFF function block and the EZ_RTC_SETTZOFF structured text function both set the
 time zone offset. If either is ran, then the time zone offset is set until a power cycle occurs (program
 restarts).

The SETDTLOCAL function block sets the date and time using local time entry (and the time zone offset us-
ing SETTZOFF) into the real time clock as UTC time.

The GETDTLOCAL function block reads the date and time from the real time clock (UTC time) and returns
the local time based on the time zone offset that was set using SETTZOFF.

Figure 12-5 is an example using SETTZOFF and SETDTLOCAL to set the time zone offset and the real
time clock (to UTC) using local date and time.

Figure 12-6 is an example using GETDTLOCAL to get the local date and time from the real time clock
(stored as UTC).

 The SETTZOFF must have been ran when the target (program)started with the current time zone off
 set in minutes for the GETDTLOCAL function block to return correct values. If the time zone offset
 (in minutes) is not correct or has not been set (SETTZOFF), the result will be incorrect local date and
 time returned.

Figure 12-5

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 122

For more detials on the SETTZOFF, SETDTLOCAL, or GETDTLOCAL function blocks, refer to Appendix
A - Function Reference.

The real time clock can also be accessed (set and read) using structured text. The structured text com-
mands are similar to the function blocks, as they provide provisions for setting/reading the real time clock
with local time and date (and time zone offset), while being stored as UTC time or setting/reading the real
time clock using UTC time directly without using local date/time.

The structured text functions include: EZ_RTC_SETTZOFF, EZ_RTC_GETDTUTC, EZ_RTC_SETDTUTC,
EZ_SETDTLOCAL and EZ_GETDTLOCAL. Other structured text function are also availabe for converting
time types.

For more information on using these structured text functions, refer to Appendix B - Target Specific ST
Function Reference. For more information on structured text, refer to Chapter 26 - Structured Text. Stan-
dard structured text function information can be found in Appendix C - Standard ST Function Reference.

Setting the Real Time Clock using EZ LADDER Utilities
The real time clock’s date and time can be set from EZ LADDER Toolkit when the hardware target is con-
nected to EZ LADDER and running in the Monitor mode (connected to the target, with the same program in
EZ LADDER Toolkit and the target and running in monitor mode).

When connected in this manner, click the f11 button. This will open the Device Properties dialog. From this
dialog, you can sync the target’s real time clock to the PC’s date and time in local format or UTC. Refer to
Figure 12-7.

Figure 12-6

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 123

Figure 12-8 shows the real time clock set to UTC time (by pressing the Sync UTC button.

To sync the target’s real time clock to the PC local time, click the sync local button. This will set the real
time clock to local time and date. No UTC time is used in the real time clock.

To sync the target’s real time clock to the PC local time, click the sync utc button. This will set the real time
clock to UTC time only. Only the UTC time is stored. No time zone offset is used.

When you have finished setting the real time clock, click the close button to close the Device Properties
dialog.

 The real time clock when set using the EZ LADDER Toolkit utilities does not read, use or store the
 time zone offset for UTC time. The time syncing function just syncs the current date and time to the
 real time clock using either local time or UTC. You must still use the SETTZOFF function block to
 correctly use the real time clock and the SETDTLOCAL and GETDTLOCAL function blocks within
 the ladder diagram. Failure to do so will result in improper real time clock date/time.

Real Time Clock Sync with SNTP
EZ LADDER Toolkit allows for the real time clock to be synced using SNTP (simple network time protocol).
This syncs the real time clock to an external source using Ethernet / WiFi or Cellular. When this feature is
used, the real time clock is synced to UTC time.

 The external source for the SNTP (Ethernet/WiFi or Cellular) must be installed before the SNTP
 feature can be installed. The target must also support the Ethernet/WiFi or Cellular device. Refer to
 target’s user manuals or Chapter 23 - Hardware Targets for targets that support these devices.

Figure 12-7 Figure 12-8

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 124

 The Real time clock must be installed before the SNTP feature can be installed. The target must also
 support the Ethernet/WiFi or Cellular device. Refer to target’s user manuals or Chapter 23 -
 Hardware Targets for targets that support the real time clock.

The SNTP sync feature is required to use other PLC on a Chip / EZ LADDER features like VersaCloud
M2M-IoT solutions (MQTT, etc).

 SNTP when implemented sets the real time clock to UTC time only (not local time). The UTC time is
 used during verification of communications to VersaCloud M2M+IoT (MQTT) solutions.

 When using SNTP, the real time clock should not be set using any other methods (SETDATE, SET
 TIME functions or structured text). Setting the real time clock outside SNTP (when SNTP is used
 and required for MQTT) may result in loss of connection to the VersaCloud M2M+IoT solution.

 As the SNTP sets the real time clock to UTC time, the GETTIME and GETDATE functions return
 values that are not directly usable without calculations. For reading the date and /or time to display
 local time (when SNTP is enabled and set to UTC time), use the GETLOCALTIME and
 GETLOCALDATE function blocks. You must know the number of hours to offset from UTC time for
 proper operation.

Installing the SNTP in the Ladder Diagram Project

To be able to use the SNTP feature in an EZ LADDER Toolkit ladder diagram project, the SNTP must first be
installed and configured. As the PLC on a ChipTM is the most commonly used target for the SNTP, it will be
used as an example to install and configure the SNTP.

The SNTP is configured using the Project Settings. Using the Project Menu, choose Settings. The Project
Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the
drop-down menu (DCPN), select the model / part number of the target. If the SNTP feature were installed, it
would be listed in the Devices pane under the Network section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the SNTP. Figure 12-9 shows the Target’s Devices window.

Click ok. The SNTP Properties dialog will open. See Figure 12-10.

Using the Available Interfaces pane, select the interface to use as the source for the SNTP (external source)
and click add. The selected source will now move to the Selected Interfaces pane.

Click the Enabled check box to enable the SNTP.

Using the RTC drop-down box, select the installed real time clock to sync.

In the Update Interval (secs) box, use the default or enter a rate which the SNTP will sync the real time
clock. This time interval may be limited based on the actual SNTP server that is used.

In the SNTP Servers pane, enter the SNTP servers to used to sync time. These can be local or internet
sources, provided there is access (through the selected interfaces) to retrieve the date and time.

Chapter 12 Real Time Clock

Divelbiss Corporation - P-Series - EZ LADDER Toolkit User Manual 125

Figure 12-9 Figure 12-10

When the SNTP is configured, click ok to close the SNTP Properties dialog. It is now listed in SPI section of
the Devices window.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The SNTP feature is now installed.

 The SNTP server will sync the real time clock to the provided SNTP time servers provided using the
 configured source. The successful syncing depends on the source and the actual SNTP servers
 being available.

SNTP Structured Text Commands

There are two SNTP structured text commands to be used in structured text functions and function blocks:
EZ_SNTP_START, EZ_SNTP_STOP.

Refer to Appendix B - Target Specific ST Function Reference for more detials on using the two functions.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 126

CHAPTER 13
Modbus Networking

This chapter provides basic information to understand how to install, configure and use the
Modbus Networking feature in the EZ LADDER Toolkit.

Chapter Contents
Modbus Overview ..127

Installing the Modbus Master ...127

Using the Modbus Master ...129

Modbus Slave (UART) ...135
Configuring for Modbus Slave ...135
Updating Network and Variable Values ...139
Modbus Slave Communication Errors ..139
Modbus Slave - Supported Master Functions140

Modbus TCP over Ethernet / WiFi ..140
Configuring for Modbus TCP over Ethernet / WiFi140
Setting Modbus TCP Master to Slave ID (Target Slave ID)142
Setting Modbus TCP Slave ID ...143

Modbus using Multiple Ports ...143

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 127

Modbus Overview
Modbus is a register based communication protocol connecting multiple devices to a single network. De-
vices on this network are divided into two types: Master and Slave. There is only one master device on a
network. The master is in control and initiates communication to all the other devices. Each device that is not
a master must be a slave. Multiple slaves may be located on a network. Slave devices listen for communica-
tion from the master and then respond as they are instructed. The master always controls the communica-
tion and can communicate to only one or all of the slaves. Slaves can not communicate with each other
directly.

 All modbus networking requires either a serial port (UART), Ethernet port or WiFi for the network
 traffic. The network device (UART, Ethernet or WiFi) must be installed prior to installing and using
 any Modbus devices in EZ LADDER Toolkit. For UART installation, see Chapter 11 - UARTS and
 Serial Ports. For Ethernet or WiFi, see Chapter 19 - Ethernet/WiFi

Installing the Modbus Master
EZ LADDER Toolkit (P-Series based products) supports Modbus Master. With Master support, any of the P-
Series targets may be used as a master on a modbus network.

 All Modbus communication availability is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if Modbus (and what network hardware) is
 supported.

Prior to using the Modbus Master in EZ LADDER Toolkit, it must be installed and configured in the target.
The Modbus Master is configured using the Project Settings.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If the Modbus Master were installed, it
would be listed in the Devices pane under the Network section. Click the add device button. The Target’s
Devices window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
the Modbus Master. Figure 13-1 shows the Target’s Devices window.

Select the Modbus Master and click ok. The Modbus Master Properties dialog will open. This dialog is used
to specify which hardware interface will be used for this Modbus Network (UARTx, Ethernet). Click the add
button. The Add Interface dialog will open. Using the drop-down Interface menu, select the actual hard-
ware interface to use (UART or Ethernet must already be installed prior to this step). Enter the Response
Timeout in milliseconds and if a UART is used, select the Uart Properties as RTU or ASCII based on your
needs. See Figure 13-2.

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 128

Click ok to close the Add Interface dialog and click ok to close the Modbus Master Properties dialog and
return to the Target Properties window. The Modbus Master is now listed in the Devices pane under the Net-
work Section. See Figure 13-3.

 The Modbus Master Properties dialog and Add Interface dialogs may also be used to adjust settings
 and change the actual hardware interface by selecting the Modbus Master in the Devices pane and
 clicking the Properties button.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The Modbus Master is now ready to be used in the ladder diagram.

Figure 13-1

Figure 13-2

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 129

Using the Modbus Master
The Modbus Master for the P-Series initiates communications to modbus slave(s) by using the MODBUS_
MASTER function block (additionally, the MODBUS_MASTER2 and MODBUS_MASTER3 function blocks
are also available - see Appendix A). This section is provided as a base for how to use the Modbus Master
on the network, not as a modbus tutorial. Previous knowledge of Modbus would ease the integration of a
modbus network.

 The Modbus Master feature in EZ LADDER Toolkit supports multiple commands for network control.
 EZ LADDER Toolkit variables are used by the MODBUS_MASTER function block as the data
 storage for values using in the network communications. When values are read from slave(s), these
 values are stored in variables that are predefined in each instance of the MODBUS_MASTER
 function block. When values are to be written to slave(s), the values to be written are captured from
 variables that are predefined in each instance of the MODBUS_MASTER function block.

Only certain Modbus Master functions (commands) are supported in EZ LADDER Toolkit. See Figure 13-4.

Figure 13-3

Functional Description Function
#

Functional Description Function
#

Read Coils 1 Write Single Register 6
Read Discrete Inputs 2 Write Multiple Coils 15
Read Holding Registers 3 Write Multiple Registers 16
Read Input Registers 4 Read / Write Multiple Registers 23
Write Single Coil 5

Figure 13-4

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 130

When the MODBUS_MASTER is place in the ladder diagram workspace, a Modbus Master Properties dia-
log box is automatically displayed. See Figure 13-5.

Like most functions, a description can be added to the function block. Using the Interface drop-down selec-
tion menu, select the interface for the Modbus Master network (the UART or Ethernet) that was installed and
configured previously. The Function Code drop-down selection box is used to select the type of function
(command) for this instance of the MODBUS_MASTER function block to execute when active. These are
listed in Figure 13-4. Select the Function Code and Interface as required. See Figure 13-5.

With the Interface and Function Code set, it is now time to specify the variables used for this function block
to capture values and send to the slave or read values from the slave and store to. To configure the vari-
ables on this function block instance, click the map data button. The Modbus Master Map Data window will
open. See Figure 13-6.

Figure 13-5

Figure 13-6

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 131

The Modbus Master Map Data window is divided into two sections: Write and Read. One or both of the win-
dow sections will be active depending upon what actual Function Code was selected in the Modbus Master
Properties dialog.

 The Write and Read sections are configured identically, with the main difference that the Write
 section is where variables are identified that will be used as the source point for writing to slave(s);
 while the Read section is where variables are identified that will be used to store data read from
 slave(s).

Starting Address

The Starting Address box for both the Read and Write sections is the base register number where data will
be read from / written to.

 The register assignments for the Modbus Master is based on the Modbus specification and thus the
 starting address is 0 based. Register 0 will always be the first available register in any group of
 registers for a Function Code type (command). Each Function Code (command) type, per the
 Modbus specification support registers from 0 to 65535 and the register groups for each Function
 Code are independent. For example, Function Code 4 (Read Input Registers) will support from 0 to
 65535 registers and Function Code 3 (Read Holding Registers) will support from 0 to 65535
 registers; however, these two groups of registers are unique and independent from each other.

 The actual number of registers supported on slave devices may vary by implementation of the
 Modbus specification on the devices. See the device’s documentation for actual supported sizes.

Enter the register address in the Starting Address box. Once a valid address is entered, several buttons
and the Registers / Variables pane becomes active. See Figure 13-7.

Figure 13-7

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 132

Adding / Specifying Variables

The buttons in the pane are used to Add, Insert, Delete, Edit and change the order of the variables for the
MODBUS_SLAVE function block.

 Add Variable: Used to add a new variable to the Registers / Variables list. Always adds the
 variable to the end of the currently listed variables.

 Insert Variable: When a variable is highlight in the list, this button will insert a variable above
 the current selection.

 Delete Variable: Deletes the highlighted variable in the list.

 Properties: Shows the highlighted variable’s properties and allows it to be changed.

 Up: Moves the highlighted variable up in the list by one (1).

 Down: Moves the highlighted variable down in the list by one (1).

Click the add variable button to add a new variable to the list. The Add Variable dialog will open. Click the
browse button. See Figure 13-8. The Variables window will open. Variables can be added or selected here
just as was shown in Chapter 5 - Creating Ladder Diagrams.

Add a new variable or select a variable from the list of variables in the Variables window and click ok. This
new or selected variable will be transferred to the Add Variable Dialog and the Variables window will close. In
the Add Variable dialog, select the type of variable to write or read: 16 bit, 32 Bit LSB (ordered Least Signifi-
cant Bit) or 32 Bit MSB (ordered Most Significant Bit). 32 bit variables will use multiple registers while 16 bit
variables use one.

 The type of variable to read / write will be entirely application dependent and slave device dependent
 on supported types.

Once the variable has been added or selected and the type is set, click ok. The Add Variable dialog will
close and the variable selected / added will now be listed in the Registers / Variables pane. Repeat the steps
to add additional variables as needed for the application and this function block instance. As per indicated,
the provided buttons allow the re-ordering of the variables.

Figure 13-9 illustrates 3 variables loaded, two 16 bit and one 32 bit. the types and actual registers that will be
read / written to are displayed in the list with the variables.

Figure 13-8

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 133

Click ok to close the Modbus Master Map Data window and click ok to close the Modbus Master Properties
dialog. One instance of the MODBUS_MASTER function block is now placed in the ladder program.

 For each variable added, memory (RAM) is used. Large numbers of registers / variables will reduce
 the overall memory available for general ladder diagram object and program. Care should be taken
 to limit variables to only those needed.

 As a MODBUS_MASTER function block supports only one Function Code (command), additional
 function block instances may need to be placed based on the application.

 For Function 5 and Function 6, only one variable may be mapped.

Understanding MODBUS_MASTER Function Block

The MODBUS_MASTER function block has two inputs (EN and ID) and two outputs (Q and ER). These
inputs and outputs are all that are required to use the MODBUS_MASTER function block.

 EN: Function block Enable Input. The EN is active on rising edge only. A rising edge on EN
 enables the function block to begin communications.

 ID: Slave ID Input. This number is the number of the slave ID that this function block
 communicates to. A valid address is 1 to 255.

 Q: Q Output. Only goes high for one scan when the communication initiated by the EN
 rising edge is completed or a time-out has occurred.

 ER: Error Output. Outputs an integer number for the status of any errors detected during
 the communications initiated by the rising edge on EN. Zero indicates NO errors. See
 the MODBUS_MASTER Function Block Errors section of this chapter for a list of error
 codes.

Figure 13-9

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 134

When the EN rising edge is detected, the function block will attempt communication with the slave device.
If an error occurs (including if the device is already busy or another MODBUS_MASTER function block is
already communicating), the error will be present on the ER output. If an error occurs, the communication
must be re-attempted in the ladder program as it is not buffered. While a function block is active, it’s ER out-
put will be set to 1. Figure 13-10 represents a ladder program using the MODBUS_MASTER function block.

MODBUS_MASTER Function Block Errors

The MODBUS_MASTER function block provides an error (ER) output to identify errors detected during Mod-
bus Master communications to slave devices. Figure 13-11 lists the supported error ID codes.

Figure 13-10

Error ID
Code

Title Description

0 No Error No error was detected during communication.
1 Exception Code Illegal Function The function code was not allowed by the slave.
1 Client Busy A communications request is in process, busy.

2 Exception Code Illegal Data Address The data address was not allowed by the slave.
3 Exception Code Illegal Data Value A data value was not allowable for the slave.
4 Exception Code Slave Device Failure An unrecoverable error occurred while the slave was at-

tempting to perform the requested function.
5 Exception Code Acknowledge The slave has accepted the request, but it will take a long

duration time to complete.
6 Exception Code Slave Device Busy The slave is processing a long duration command / function.
8 Exception Code Memory Parity Error A Parity error was detected in memory during a attempt to

read a record file.
10 Exception Code Gateway Path Unavailable For Gateways only. Gateway was unable to allocate an inter-

nal communication path from the input port to the output port
for processing the request.

11 Exception Code Gateway Target No Re-
sponse

For Gateways only. Indicates no response was received
from the target device.

-1 Client Receive Packet Error An error was detected when receiving a packet from a slave
-2 Client Timeout Waiting for Response A time-out occurred while waiting for slave response.
-3 Client Error Transmitting Packet A error occurred transmitting a packet to a slave.
-4 Client Invalid Request The request was not valid.
-5 Client Buffer Error An error occurred access the communications buffer.
-6 Client Invalid State The client’s current state is not valid.
-7 Client Connect Failed Unable to connect to the slave.
-8 Client Checksum Error A checksum error occurred.
-9 Client Null Transport A Null transport pointer was detected.

Figure 13-11

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 135

Modbus Slave (UART)
EZ LADDER Toolkit provides the ability to add Modbus slave functionality to a ladder diagram (making the
device a Modbus Slave).

 Modbus Slave support is based on actual hardware target specifications. PLC on a ChipTM
 Integrated Circuits and Modules support Modbus Slave as well as do some standard Divelbiss
 PLCs and Controllers. For PLCs and controllers, refer to the supported features. See Chapter 23 -
 Hardware Targets.

Configuring for Modbus Slave

Prior to using the Modbus Slave in EZ LADDER Toolkit, it must be installed and configured in the target. The
Modbus Slave is configured using the Project Settings.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If the Modbus Slave were installed, it
would be listed in the Devices pane under the Network section. Click the add device button. The Target’s
Devices window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
the Modbus Slave. Figure 13-12 shows the Target’s Devices window.

Figure 13-12

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 136

Select the Modbus Slave and click ok. The Modbus Slave Properties dialog will open. This dialog is used
to specify which hardware interface will be used for this Modbus Network (UARTx, Ethernet). Click the add
button. The Add Interface dialog will open. Using the drop-down Interface menu, select the actual hardware
interface to use (UART or Ethernet must already be installed prior to this step).

For UART, enter the Slave ID of this unit (1-255), select the Uart Properties as RTU or ASCII based on
your needs. See Figure 13-13. The packet Transmit Delay defaults to 3.5 and typically it does not need to be
adjusted.

 Each device on a Modbus network must have a unique ID number. Duplicate ID numbers will result
 in a malfunctioning network and communication errors.

 For UARTs, the slave ID is set in the Modbus Slave configuration in the Project Settings (Modbus
 Slave ID is set in the as shown above). For those needing to change the Slave ID on the fly, it can be
 done by using the MODBUS_SET_PROPERTY function block in the ladder diagram project.

Click ok to close the Add Interface dialog and click ok to close the Modbus Slave Properties dialog and
return to the Target Properties window. The Modbus Slave is now listed in the Devices pane under the Net-
work Section. See Figure 13-14.

 The Modbus Slave Properties dialog and Add Interface dialogs may also be used to adjust settings
 and change the actual hardware interface by selecting the Modbus Slave in the Devices pane and
 clicking the Properties button.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The Modbus Slave is now ready to be used in the ladder diagram.

 For all P-Series targets, the actual register numbers are always base zero per Function Code
 (Master Function Code) supported. When a modbus master queries a slave, the function code is
 identified and then the appropriate bank or block of registers are accessed. Register 0 will always be
 the first available register in any group of registers for a Function Code type (command). Each
 Function Code (command) type, per the Modbus specification support registers from 0 to 65535 and
 the register groups for each Function Code are independent. For example, Function Code 4 (Read
 Input Registers) will support from 0 to 65535 registers and Function Code 3 (Read Holding
 Registers) will support from 0 to 65535 registers; however, these two groups of registers are unique
 and independent from each other.

Figure 13-13

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 137

Typically the following register types are supported: Coils, Discrete Inputs, Inputs, and Holding Registers.
Using these groups of registers, a master can read and write as needed for communication.

Figure 13-14

Coil Registers

Coils registers are registers that are written to by the Master. Using these registers, the master can
directly control coils located in the ladder diagram project (internal only).

Discrete Input Registers

Discrete Input registers are registers that are read directly by the Master. Using these registers, the
master can directly monitor the status of contacts located in the ladder diagram project (internal or
real world).

Input Registers

Input registers are registers that may be read by the Master, but can only be written to by the slave
itself. Using these registers, the slave can set data that the master can view, but not modify.

Holding Registers

Holding registers are registers that may be read and modified by both the Master and Slave. These
are the most commonly used registers to pass data between the master and slave.

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 138

 All Modbus registers are accessed as variables and must begin with MB_ to identify a modbus
 slave register.

Assigning and Setting Slave Registers

To use Modbus Slave registers, registers must be assigned to variables. For more information regarding
variables, refer to Chapter 5 - Creating Ladder Diagram Projects. Modbus registers can be assigned by
editing an existing variable when new variables are created.

 Coils and Discrete Input registers are to be used with Boolean variable types while Holding and Input
 Registers are typically used with Integer variables.

To assign a Modbus register to a variable, using the Add Variable or Edit Variable dialog, click the edit but-
ton next to the Address / Register field. See Figure 13-15.

The Edit Address / Register dialog box will open. See Figure 13-16. Using the drop down menu, select
MB_(Modbus). From the now visible Register Type drop down box, select the type of register to use (of
the four supported types). In the Register Index box, type the address number of the modbus register (0-
65535). This number depends on the type of register and it’s range of allowed register numbers.

 As the register type is selected and the number entered, the Address / Register displayed will be
 updated immediately. The MB_ and Function code is automatically entered. Only the actual
 register number needs to be added. This register number is always between 0 and 65535. This
 register number is automatically added to the MB_ X and type to create the register number in the
 correct range.

Select the type of variable to write or read: 16 bit, 32 Bit LSB (ordered Least Significant Bit) or 32 Bit MSB
(ordered Most Significant Bit). 32 bit variables will use multiple registers while 16 bit variables use one.

Click ok to close the Edit Address / Register dialog box and return to the Add/Edit Variable dialog box. The
register address is transferred to the text box automatically. Click ok to save the variable. The register is
now assigned to a variable.

Figure 13-15

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 139

 A Modbus address may be directly typed into the Address / Register box without using the edit
 button.

Updating Network and Variable Values

When network registers are assigned to variables, any change to the variable locally in the ladder diagram
project is available to the master to see without additional programming. If the master chooses to view the
register, it will see the variables current value.

If the master chooses to modify a register (if the type is allowed to be modified), then any changes made by
the master to the register will immediately change the value of the variable that is assigned to that register
and will be used in the ladder diagram project locally.

Modbus Slave Communication Errors

Modbus communications supports the use of error codes to identify and diagnose problems with the network
and slaves. These errors are reported on master only. Typical error codes are:

 2 - Illegal Data Address This identifies that the master attempted to access an invalid register.

 3 - Illegal Data Value This identifies the master attempted to access a register that is valid
 but not used in the ladder diagram project (on the slave unit).The
 largest register number is kept automatically by EZ LADDER
 Toolkit in the ladder diagram project.

 For more details regarding errors and error codes on a Modbus Network, refer to the network
 Master’s documentation.

Figure 13-16

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 140

Modbus Slave - Supported Master Functions

EZ LADDER Toolkit’s Modbus Slave supports eight standard Modbus master functions (functions the master
can use to access and update slave registers). While there is no way for the ladder diagram or EZ LADDER
to use these functions, they are noted for reference.

 Supported Functions include:

 1 - Read Coil Status
 2 - Read Discrete Input Status
 3 - Read Holding Registers
 4 - Read Input Registers
 5 - Write to a Single Coil
 6 - Write to a Single Register
 15 - Write to Multiple Coils
 16 - Write to Multiple Registers

Modbus TCP over Ethernet / WiFi
In addition to supporting Modbus Master and Slave via UART(s) or Serial Ports, the P-Series based targets
also support Modbus TCP over Ethernet / WiFi.

 Modbus TCP over Ethernet/WiFi support is based on actual hardware target specifications. PLC on
 a ChipTM Integrated Circuits and Modules support Modbus Slave as well as do some standard
 Divelbiss PLCs and Controllers. For PLCs and controllers, refer to the supported features. See
 Chapter 23 - Hardware Targets.

Configuring for Modbus TCP over Ethernet / WiFi

 Before Modbus TCP over Ethernet or WiFi can be used, Ethernet / WiFi must be installed in the
 project settings prior to configuring Modbus. Refer to Chapter 19 - Ethernet / WiFi.

Prior to using the Modbus TCP over Ethernet in EZ LADDER Toolkit, Modbus must be installed and config-
ured in the target. The Modbus TCP is configured using the Project Settings.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If the Modbus were installed, it would be
listed in the Devices pane under the Network section. Click the add device button. The Target’s Devices
window will open.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
the Modbus Slave or Modbus Master depending upon your exact needs. Figure 13-17 shows the Target’s
Devices window.

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 141

For this example select the Modbus Slave and click ok. The Modbus Slave Properties dialog will open.
This dialog is used to specify which hardware interface will be used for this Modbus Network. Click the add
button. The Add Interface dialog will open. Using the drop-down Interface menu, select the actual hardware
interface: Ethernet. The Ethernet must already be installed prior to this step.

For Modbus Slave, enter the Number of TCP Sockets based on your needs. Selet the TCP Port (the default
is 502). See Figure 13-18. For details on installing Ethernet, see Chapter 19 - Ethernet / WiFi.

 For Modbus Slave, the TCP Pport can be changed in the ladder diagram at run-time by using the
 MODBUS_SET_PROPERTY function block.

 For setting the Modbus TCP Port for Modbus Master, use the MODBUS_MASTER2 function block .
 See Appendix A - Function Reference for more detials on using the MODBUS_MASTER2 function
 block.

 The WiFi interface is considered Ethernet in EZ LADDER Toolkit. When using WiFi for Modbus TCP,
 select Ethernet as the interface. When selecting Ethernet on WiFi enabled hardware, it will enable
 the Modbus TCP over WiFi.

 If Modbus Master was selected, the Number of TCP Sockets is not available, but the Response
 Timeout will need to be configured.

Figure 13-17

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 142

Click ok to close the Add Interface dialog and click ok to close the Modbus Slave Properties dialog and re-
turn to the Target Properties window. The Modbus Slave is now listed in the Devices pane under the Network
Section.

 The Modbus Slave Properties dialog and Add Interface dialogs may also be used to adjust settings
 and change the actual hardware interface by selecting the Modbus Slave in the Devices pane and
 clicking the Properties button.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The Modbus Slave TCP over Ethernet/WiFi is now ready to be used in the
ladder diagram.

 When configured as a Modbus Master, the target Slave ID (slave to communicate to) is set in the
 ladder diagram project using a variable and the MODBUS_MASTER or MODBUS_MASTER2
 function block. The variable connected to the ID pin of the MODBUS_MASTER function block will
 hold the IP address of the slave device. The slave ID is to be entered in an IP address format (eg:
 192.168.1.55). Refer to Figures 13-19 and 13-20. Refer to Appendix A - Function Reference for more
 details on the MODBUS_MASTER and MODBUS_MASTER2 function blocks.

Setting Modbus TCP Master to Slave ID (Target Slave ID)

When configured as a Modbus Master, the target Slave ID (slave to communicate to) is set in the ladder
diagram project using a variable and the MODBUS_MASTER or MODBUS_MASTER function blocks.
The variable connected to the ID pin of the MODBUS_MASTER(2) function block will hold the IP address
of the slave device. In the Default Value field, the slave ID is to be entered in an IP address format (eg:
192.168.1.55). Refer to Figures 13-19 and 13-20.

Figure 13-18

Figure 13-19

Chapter 13 Modbus Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 143

Setting Modbus TCP Slave ID

The Slave ID of the unit when configured for Modbus Slave is the actual IP address of the unit (the actual IP
address that was configured in the unit’s Bootloader. The address can be changed by editing the IP address
by accessing the Bootloader. See Chapter 4 - Configuring Targets for details on accessing and setting the
IP address within the Bootloader.

 In addition to changing the Slave ID (IP address) in the Bootloader, it can be changed using
 Structured Text and the built-in Structured Text function EZ_Eth_SetStaticIPV4Addr. For
 information regarding structured text and using structured text functions, see Chapter 26 -
 Structured Text and Appendix B - Structured Text Referece of this manual.

Modbus using Multiple Ports
The structure of the EZ LADDER Toolkit and P-Series hardware targets allow for modbus to be implemented
using multiple ports that include serial ports and ethernet. As an example, two serial ports may be configured
to be Modbus slaves with unique slave ID numbers or one serial port may be configured as a slave and the
Ethernet / WiFiport may be configured to use Modbus TCP.

 Regardless of the configuration, all the modbus registers are universal; meaning all the ports may
 use exactly the same register numbers (each port does not have individual register sets). This allows
 for multiple devices to access the same register and variable and therefore share the same data
 easily.

 If the data in registers must be unique to each port, then the network registers must be mapped and
 divided based on register numbers on a per port basis. Using variables for each mapped network
 register section per port will allow this separate values to be accessed by the ladder variables (based
 on register number).

Figure 13-20

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 144

CHAPTER 14
CAN Networking

This chapter provides basic information to understand how to install, configure and use
the OptiCAN Networking, J1939 Networking and NMEA 2000 Networking feature in the EZ
LADDER Toolkit.

Chapter Contents
What is CAN? ...145

Installing CAN Network Ports ...145

Divelbiss OptiCAN Network..147
Planning the OptiCAN Network ..147
Hardware Requirements & Recommendations147
OptiCAN Specifications ..148
Using Controllers on the OptiCAN Network ...150
OptiCAN Controller Heartbeat ..150
Installing a Controller on the OptiCAN Network150
Controller OptiCAN Network Register Assignments153
Broadcasting to Other Controllers and Devices155
Using the OptiCAN Configuration Tool ...160

J1939 Networking / NMEA 2000 ...165
J1939 PGN Overview ...165
J1939 SPN Overview ...165
Installing J1939 in EZ LADDER Toolkit ..165
Standard J1939 Database ..169
User J1939 Database ...170
Advanced J1939 Configuration ...171
Receiving Data with J1939 ...172
Transmitting Data with J1939 ...175
PGN Request ...178
BAM ..178
DIRECT CONNECT ..179

Native CAN Communications ...180

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 145

What is CAN?
CAN is short for Controller Area Network. CAN networks use a two-wire backbone to provide communication
to each individual item on the network. There are specific requirements for the hardware, see the OptiCAN
section of this chapter.

CAN networking refers to the hardware. There are multiple CAN protocols for communicating between
devices on a CAN network. As with all networking and protocols, protocols have advantages and disadvan-
tages. Some common protocols are: SAE J1939, CANopen, etc.

At this time the P-Series based targets only support the proprietary OptiCAN protocol, SAE J1939 and
NMEA 2000.

Installing CAN Network Ports
Prior to installing and configuring any type of CAN protocol, the actual CAN port must installed in the P-
Series target.

 CAN Networking Port availability is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if CAN Network Ports are supported.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If any CAN port were installed, it would
be listed in the Devices pane under the Bus\CAN section. Click the add device button. The Target’s Devices
window will open. All the available devices and features for the target are shown in the Devices section.
Scroll down and find the CAN ports (CAN0, CAN1, etc). Figure 14-1 shows the Target’s Devices window.

Figure 14-1

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 146

Select CANx and click ok. The CANx Properties dialog will open. This dialog set the CAN bit rate for com-
munication for any Native CAN communications. Refer to figure 14-2. Native CAN communications is
discussed later in this chapter.

 Rate and other communication configuration items are controlled by the specific protocol
 (ie: OptiCAN, SAE J1939 and NMEA 2000) and are set in their respective target settings or hard set
 when the protocol is installed. OptiCAN bit rate is hard set at 250K. SAE J1939 and NMEA 2000 bit
 rate is set in the SAE J1939 and NMEA 2000 properties when added to the target.

The Listen Only Mode checkbox applies to the Native CAN communications. When checked the Native
Raw CAN communications can receive CAN data, but not transmit. Select the Listen Only Mode if you want
to receive CAN data only (Native CAN).

 When another protocol such as OptiCAN, SAE J1939 or NMEA 2000 is installed in the project, the
 Listen Only Mode checkbox and properties is disable and does not apply.

Click ok. The CANx Properties dialog will close and the previous target properties window will now list the
CAN port as an installed device.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The CAN port is now installed and ready to be used in the ladder diagram.

Figure 14-2

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 147

Divelbiss OptiCAN Network
OptiCAN is a Divelbiss proprietary CAN (Controller Area Network) that provides a communication link be-
tween Divelbiss OptiCAN enabled controllers and other OptiCAN enabled controllers and devices such as
I/O modules or other controllers. The Divelbiss OptiCAN network supports up to 64 nodes (devices) and is
register based. Each node supports up to 256 registers and communication can be triggered based on time
or on an event.

Divelbiss OptiCAN can perform the following major functions:
 1. Allow controllers to access external I/O Devices
 2. Allow controllers to access other controllers
 3. Allow the user to configure devices utilizing the CAN protocol

 Only Divelbiss OptiCAN enabled devices will communicate on the network OptiCAN network.
 Connecting non-OptiCAN devices will result in network errors including loss of communication.

Planning the OptiCAN Network

As with any network or communication scheme, the network should be planned taking into account the
amount of communication, broadcast rate, communication triggers, register assignments and timing require-
ments. This plan is essential for a successful implementation of a network.

 It is suggested that register needs should be identified and assigned for each device prior to the start
 of the programming. While any legal register may be used, it is recommended that register
 assignments start at the high end of available registers and work backward (i.e.: start with register
 127 and then assign 126 and so on). As some devices utilize lower register numbers this will ensure
 that the controller register assignments will not interfere with the device register assignments.

All OptiCAN controllers have the ability to broadcast (send data) and listen (receive data). OptiCAN Control-
lers broadcast to all units (called nodes) on the network. This is called a Global Broadcast.

 While all controllers may broadcast and listen, ideally one should be identified as a controlling agent
 for the network. This agent controller should be responsible for the network commands that start,
 stop and reset the OptiCAN network communications.

Hardware Requirements & Recommendations

 For optimal functionality, performance and noise immunity, all the hardware recommendations must
 be followed. A failure to follow recommended hardware requirements could result in decreased
 reliability of the OptiCAN Network.

Please adhere to the following requirements and recommendations:

 1. The OptiCAN network cable should be of a twisted pair with shield variety and cannot exceed 40
 meters in total length. Additional length or incorrect cable type may limit functionality or cause the
 network to fail.

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 148

 Please adhere to the following specifications for cable requirements for all OptiCAN networks.

 2. A 120Ω ohm resistor (load) is required at each end of the network.

 Please adhere to the following specifications for terminating resistor requirements for all
 OptiCAN networks.

 3. The cable shield should be grounded near the middle of the network (cable) run.

 The shield should only be connected to ground and one point on the network.
 Multiple ground points could cause a ground loop, decrease noise immunity and
 adversely affect network performance.

 4. If wiring as a network bus with stub connections, the maximum stub length from bus to node is 1
 Meter.

 See Figure 14-3 for a sample connection diagram.

OptiCAN Specifications

Twisted Pair Shielded Cable Specifications
Parameter Symbol Minimum Nominal Maximum Unit Comments

Impedance Z 108 120 132 Ω
Specific Resistance rb 0 25 50 mΩ/m
Specific Capacitance Cb 0 40 75 pF/m Between Conductors

Cs 0 70 110 pF/m Conductor to Shield

Terminating Resistor Specifications
Parameter Symbol Minimum Nominal Maximum Unit Comments

Resistance RL 110 120 130 Ω Min power dissipation 400mW(1)

Inductance 1 µh

(1) Assumes a short of 16V to VCAN_H

Bandwidth: 250 KBits / Sec
Maximum Cable Length: Up to 270 Meters 1

Maximum Number of Nodes: Up to 254 Nodes 1

Registers per Node: 256 Registers
1 Dependent on cable selection and bus loading. See Application Note for CAN Transceiver (NXP AN00020 or your CAN transceiver)

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 149

Figure 14-3

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 150

Using Controllers on the OptiCAN Network

A typical application involves a controller running it’s own ladder diagram project, monitoring inputs and
controlling outputs based upon the project that is running. When connected to an OptiCAN network the con-
troller will operate the same, but now using OptiCAN, it can communicate to other devices including other
controllers with OptiCAN and OptiCAN I/O Modules.

The following describes how a controller can operate when used on a active OptiCAN network.

 1. Local Control: Monitor Inputs and Control Outputs
 2. Globally broadcast data to all OptiCAN Nodes on the OptiCAN Network
 3. Listen for Broadcasts from a specific Node on the OptiCAN Network

 All EZ LADDER Toolkit programmed OptiCAN network controllers are configured using the EZ
 LADDER Toolkit and maintain their network settings, parameters and register settings in the actual
 ladder diagram project. Each controller on the OptiCAN Network may have different settings and all
 will be required to have a different Node ID (address).

OptiCAN Controller Heartbeat

Each OptiCAN controller has the ability to broadcast a signal called a heartbeat. This signal is broadcast at
a regular interval and is used to ensure that all devices on the network are communicating properly. Each
node automatically listens for this heartbeat and adjusts OptiCAN registers based on the network condition.
These conditions may be monitored using function blocks.

 One node on the OptiCAN network MUST broadcast the heartbeat message for the network to
 function properly. Although it is possible to have multiple controllers on one network sending
 heartbeats, it is recommended only one controller broadcast a heartbeat per network.

 In the event the heartbeat is lost, then the local ladder diagram project should ignore data from the
 network as the loss of heartbeat signifies that communication with part or all of the network has been
 lost. How a controller responds to a network loss is entirely dependent on the ladder diagram project.

Installing a Controller on the OptiCAN Network

Before a controller may communicate on the OptiCAN network, it must be installed in the EZ LADDER Tool-
kit. Once the OptiCAN settings are configured, they are stored in the actual ladder diagram project. Please
see the following steps required to install and configure the OptiCAN network feature on a controller. Actual
menus steps to reach the OptiCAN configuration may vary based on the actual controller used, but the con-
figuration itself is always the same. Divelbiss standard controllers based on PLC on a Chip (Enhanced Baby
Bear, PCS-XXX, etc) are configured based on the part number. For details on specific targets, please see
Chapter 23 - Hardware Targets

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 151

 OptiCAN Networking availability is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if OptiCAN is supported.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If OptiCAN were installed, it would be
listed in the Devices pane under the Device section. Click the add device button. The Target’s Devices win-
dow will open.

 A CAN port must be installed prior to installing OptiCAN. See Installing CAN Network Ports earlier
 in this chapter.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
the OptiCAN. Figure 14-4 shows the Target’s Devices window.

Click ok. The OptiCAN Properties dialog will open allowing configuration of the OptiCAN communications
settings. Refer to Figure 14-5.

Set the paramters as needed:

 1. CAN Port Using the drop down menu, select the physical CAN port that will be
 connected to the OptiCAN network. All installed and not used CAN ports
 are displayed.

Figure 14-4

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 152

 2. Node ID The Node ID serves as the controller’s address on the network. It may be
 numbered up to the maximum number of nodes allowed.

 All Node IDs on an OptiCAN Network must be unique. Duplicate Node
 IDs will result in communication errors or communication loss.

 The node ID may also be set from the ladder diagram project using
 a variable. This variable must be configured as node 255. The vari-
 able (integer value) then becomes the OptiCAN node ID. It is important
 to keep this ID number in the proper range.

 3. Broadcast Rate The rate that the controller will broadcast registers is entered here in
 milliseconds. This timing requirement should be identified during network
 planning.

In addition to the parameters listed above that are required, the following additional configuration points are
optional based on the requirements of the controller, program and network configuration.

 1. Send Heartbeat Check this box configure this controller to send a network heartbeat signal.

 One node on the OptiCAN network MUST broadcast the heartbeat
 message for the network to function properly. Although it is possible
 to have multiple controllers on one network sending heartbeats, it is
 recommended only one controller broadcast a heartbeat per network.

 2. 191 Node Status This setting identifies when to broadcast the status of this controller (node).
 The broadcast trigger may be selected by clicking in the table. The selections
 are Specified Interval, Change of State and Specified Interval and Change of
 State.

Figure 14-5

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 153

 3. CAN Tx Errors This setting identifies when to broadcast the CAN Transmit errors identified by
 this controller (node).The broadcast trigger may be selected by clicking in the
 table. The selections are Specified Interval, Change of State and Specified
 Interval and Change of State.

 4. CAN Rx Errors This setting identifies when to broadcast the CAN Receive errors identified by
 this controller (node).The broadcast trigger may be selected by clicking in the
 table. The selections are Specified Interval, Change of State and Specified
 Interval and Change of State.

When the OptiCAN properties have been configured, click ok to close the OptiCAN Properties dialog and
return to the the Target Properties window. OptiCAN is now listed in the Devices pane under Device.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. OptiCAN is now installed and ready to be used in the ladder diagram.

Controller OptiCAN Network Register Assignments

The OptiCAN network operates based on preset and user defined registers. The following are general reg-
ister assignments and information common for all OptiCAN enabled controllers. For non-controller devices,
please consult the product’s data sheet for detailed register assignments and preset functions.

General Register Assignments: These are the overall general register assignments common to all OptiCAN
enabled devices.

Register Number Assigned Function / Use
0-127 User Defined Controller Registers and I/O Defined Registers

128-191 Common Broadcast Registers
192-255 Common Configuration and Command Registers

User Defined registers for controllers are available for the user to define the use of during the ladder diagram project
development. Device Defined registers for I/O and other devices have preset definitions of register use and cannot be
changed.

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 154

 The Node Status register (191) is represented by a 32 bit number. The lower 16 bits represents
 the current status code while the upper 16 bits represents the error code.

 There are three status codes supported on the OptiCAN network. The status codes are:
 1 = Reset, 2 = Active, and 4 = Error.

 If the error code returned is 0, then typically, the network was not started.

 Error codes are divided into two groups. Device specific errors are numbered 0-32767 while
 common error codes are numbered 32768-65535.

 Common Error Codes are as follows:

 65535 = CAN Controller Receive Error 65531 = CAN Controller Bus Off State
 65534 = CAN Controller Receive Warning 65530 = CAN Controller Data Overrun
 65533 = CAN Controller Transmit Error 65519 = OptiCAN Heartbeat Timeout
 65532 = CAN Controller Transmit Warning 65518 = CAN Controller Error

Common Configuration / Command Register Assignments: These registers are pre-assigned and cannot
be altered. These register’s contents may only be modified by a controller and can only change the I/O setting.

Register Number Name Description Read / Write
255 Node ID The node’s ID Number Read / Write
254 Serial Number The node’s Serial Number Read

253 Broadcast Interval Interval for Broadcasting (ms) Read / Write
252 Broadcast Trigger 0 Broadcast Trigger for Registers 0-15 Read / Write
251 Broadcast Trigger 1 Broadcast Trigger for Registers 16-31 Read / Write
250 Broadcast Trigger 2 Broadcast Trigger for Registers 32-47 Read / Write
249 Broadcast Trigger 3 Broadcast Trigger for Registers 48-63 Read / Write
248 Broadcast Trigger 4 Broadcast Trigger for Registers 64-79 Read / Write
247 Broadcast Trigger 5 Broadcast Trigger for Registers 80-95 Read / Write
246 Broadcast Trigger 6 Broadcast Trigger for Registers 96-111 Read / Write
245 Broadcast Trigger 7 Broadcast Trigger for Registers 112-127 Read / Write
244 Broadcast Trigger 8 Broadcast Trigger for Registers 128-143 Read / Write
243 Broadcast Trigger 9 Broadcast Trigger for Registers 144-159 Read / Write
242 Broadcast Trigger 10 Broadcast Trigger for Registers 160-175 Read / Write
241 Broadcast Trigger 11 Broadcast Trigger for Registers 176-191 Read / Write

Common Broadcast Register Assignments: These registers are pre-assigned and cannot be altered

Register Number Name Description Read / Write
191 Node Status This Node’s Status Read
190 CAN Transmit Errors CAN Transmit Error Counter Read

189 CAN Receive Errors CAN Receive Error Counter Read

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 155

Broadcasting to Other Controllers and Devices

To broadcast from one controller to other controllers and devices, the following steps should be completed
before proceeding.

 1. All OptiCAN Devices and Controllers on the network must be identified with unique
 Node ID numbers and configured properly.

 2. Register assignments and uses should be defined as these register number will be
 needed to broadcast and listen.

 3. The heartbeat node should be identified.

 To broadcast to nodes, several steps must take place in addition to the configurations listed above.
 For the OptiCAN network to function correctly, several steps must be taken. Before any node can
 broadcast or listen, the OptiCAN Network must be started.

To Start the OptiCAN Network

The OPTICAN_TXNETMSG function block is used to send global network commands to all OptiCAN nodes
on a network. Using this function block, a controller may send a Network Start, Network Stop or a Net-
work Reset command.

 On power up, the OptiCAN network does NOT start by default and will not begin communication
 until one controller has sent the Network Start command.

To send the start command, the OPTICAN_TXNETMSG function block is used. Using the OPTICAN_
TXNETMSG function block is a two step process. When placing the function block, the OptiCAN Transmit
Network Message dialog box will open. See Figure 14-6. Using the drop down menu, select the Network
Message Start Network.

Figure 14-6

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 156

Click ok to place the function block in the ladder diagram project. Figure 14-7 is a sample of a complete
OPTICAN_TXNETMSG circuit. Note the use of contacts to control when the Start Network is sent.

 The Network Start should be sent based on two conditions: The network needs to start as in a
 start-up or if communication errors are detected. If a single node loses power, it will appear as
 communication loss. When node regains power, it will not communicate on the network unless
 another Network Start is sent (since nodes do not start on power up). If at any time a communication
 is lost to a node, re-send the Network Start.

 Restarting upon an error is entirely application dependent. Some applications would benefit from an
 automatic restart while other applications may find it beneficial to stop all functions when an error is
 detected. Safety should be paramount when deciding when to automatically restart.

All nodes on the network should begin communication upon receipt of the Start Network command. With the
network started and communicating, it is now possible to broadcast to nodes and listen for node broadcasts.

Global Broadcasting to all Nodes

To broadcast or listen, a basic understanding of registers is required. Typically, controller registers 0-127
are available to be user-defined and used while 128-255 are pre-defined and cannot be altered. The user-
defined registers are commonly used to communicate between controllers.

 It is recommended that before programming is started that all nodes are identified, assigned a node
 ID and documented. For each device, their register requirements should be identified, registers
 assigned and registers documented. This will verify the all requirements are met and help to promote
 proper functionality and design.

To send a global broadcast, a variable must be identified and assigned to use an OptiCAN register. To as-
sign an OptiCAN register to a variable, using the Add Variable or Edit Variable dialog, click the edit button
next to the Address / Register field. See Figure 14-8.

The Edit Address / Register dialog box will open. See Figure 14-9. Using the drop down menu, select
CAN_(OptiCAN). Fill in the Register Number only to transmit to the same register on all nodes. The regis-
ter number must be a user-defined register (0-127). When broadcasting, leave the Node ID empty or blank.

 Leaving the Node ID blank causes this variable to be sent to the same register number on all nodes
 on the network (Global Broadcast). This method will allow for any node to have the ability to listen for
 this register broadcast.

Figure 14-7

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 157

Using the Broadcast drop down menu, select a broadcast trigger. The choices are: None, Specified Inter-
val, Change of State and Specified Interval and Change of State. This register will be broadcast when this
condition is met. Click ok to close the dialog and click ok to close the Add / Edit Variable dialog.

 As the register type is selected and the number entered, the Address / Register displayed will be
 updated immediately. The CAN_ and the register number is automatically entered.

In this example, when this ladder diagram project is running, value of the variable OilPSI will be transmitted
globally to all nodes at register 25. The interval will the same as Broadcast Rate that was configured in the
Project Settings.

Figure 14-9

Figure 14-8

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 158

Listening for Broadcasts

While broadcasting can be global or to a specific node ID, all listening for broadcasts are specific. For a
controller to listen for a broadcast, the specific node ID and register are required.

To listen for a broadcast, a variable must be identified and assigned to use an OptiCAN register. To assign
an OptiCAN register to a variable, using the Add Variable or Edit Variable dialog, click the edit button next to
the Address / Register field. See Figure 14-10.

The Edit Address / Register dialog box will open. See Figure 14-11. Using the drop down menu, select
CAN_(OptiCAN). Fill in the Node ID with the node ID number of the device you wish to listen for.

Fill in the Register Number that you are listening for on the specific node. The register number must be a
user-defined register (0-127).

Click the IN check box. This identifies that this variable will be listening, not broadcasting. The Broadcast
Trigger drop down is no longer available. Click ok to close the dialog and click ok to close the Add / Edit Vari-
able dialog.

 Leaving the node ID blank while is allowable, but is not a valid address and no data will be received.

Figure 14-10

Figure 14-11

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 159

When this ladder diagram project is running, if a broadcast from node ID 11, register 4 is seen on the net-
work, it will be heard and the register (variable) on this controller will be updated.

Determining Node Status

As discussed earlier in this chapter, that a Start Network command must be transmitted to start the network
communicating and that it should happen on start up. In addition, it was recommended to monitor nodes
status and possible resent the Start Network command in the event of a communications loss to a node.

To determine the status of a specific node, the OPTICAN_NODESTATUS function block is used. Using the
OPTICAN_NODESTATUS function block is a two step process. When placing the function block, the Opti-
CAN Node Status Properties dialog box will open. See Figure 14-12.

In the Node ID field, enter the node ID that is to be monitored for communication loss and in the Timeout
(ms) field, enter the amount of time that communication is lost before the node status is changed (in millisec-
onds).

 When enabled, the OPTICAN_NODESTATUS block’s Q output will be true if messages are received
 from the actual node. If the Q output is false, then the node status is not valid as no messages are
 received from it. When this occurs, the VAL output will be set to zero.

 The OPTICAN_NODESTATUS function block is node specific, meaning that for each node that must
 be monitored for a network restart, a separate function block is required. In addition, nodes that are
 considered critical in overall operation may require multiple uses of the OPTICAN_NODESTATUS
 function block to identify errors and handle them correctly. Restarting or stopping based on
 communication errors is application dependent. Keep in mind, there will always be some
 communication errors on any network. The amount and type of what is allowable is application
 dependent.

Click ok to place the function block in the ladder diagram project. Figure 14-13 is a sample of a complete
OPTICAN_NODESTATUS circuit. The Error variable shown will be equal to the status of the node that was
programmed into the function block. The error codes are listed earlier in this chapter.

Figure 14-12

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 160

Using the OptiCAN Configuration Tool

Up to this point, we have configured controllers on the OptiCAN network. In addition to controllers, other de-
vices support OptiCAN including I/O modules. As these devices are not programmed with an EZ LADDER
Toolkit ladder diagram project, other means must be used to identify and configure them. There are two tools
that may be used to configure non-controller OptiCAN devices.

The first option is to purchase the OptiCAN Configuration Tool Professional. The Professional version is
sold separately and requires additional hardware (included in the purchase). The Professional version does
not have a limitation on the number of nodes that may configured. In addition, it also has more advanced
controls, diagnostics and reporting features. The OptiCAN Configuration Tool Professional has it’s own
User’s Manual.

 If the OptiCAN network will host more than 10 non-controller nodes, then you must purchase and
 use the OptiCAN Configuration Tool Professional to configure the non-controller nodes.

The OptiCAN Configuration Tool Basic is part of the EZ LADDER Toolkit and is capable of configuring up to
10 total non-controller nodes on an OptiCAN network. As this is a feature of the EZ LADDER Toolkit and
does not require additional hardware or software, it will covered in detail.

The can detect up to 10 nodes, returning the Node ID, Device Type / Name and it’s Serial Number.

To use the OptiCAN Configuration Tool, a ladder diagram project with OptiCAN enabled must be loaded,
compiled and running on a target. Using EZ LADDER Toolkit, change to the Monitor Mode. In the Monitor
Mode, using the Project Menu, select OptiCAN. The Divelbiss OptiCAN Configuration Tool will open in a
new window. See Figure 14-14.

 EZ LADDER Toolkit must have a project loaded and be in Monitor mode (with OptiCAN enabled) to
 open the OptiCAN Configuration Tool. It is not necessary to connect to the target controller. If
 connected to the controller, the OptiCAN Configuration Tool will disconnect EZ LADDER Toolkit from
 the controller when it opens.

 Whenever the OptiCAN Configuration tool connects, it automatically sends the Stop Network
 command. The network will have to be restarted for proper operation.

Figure 14-13

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 161

As shown in Figure 14-14, there are two devices on the OptiCAN network. The tool shows the Node ID,
Type and Serial Number for each of the devices. These two devices are already configured as they have
Node ID’s assigned.

 When configuring a non-controller device for the first time, the device will display with a Node ID of
 255. The 255 designation is reserved for devices that have not been configured. See Figure 14-15.
 For multiple new devices, they will all be assigned the same 255 Node ID. The controller can
 differentiate between devices that have not been configured using their serial number. The serial
 number is programmed at the factory and is not user changeable.

 Only non-controller device Node IDs may be configured using this tool. Controller Node IDs are only
 changeable in the actual ladder diagram project loaded on the controller.

Figure 14-14

Figure 14-15

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 162

To Configure a Node

To configure a node, select the node (highlight) in the list and click the configure node button. The Node
Configuration dialog box will open. See Figure 14-16. The following can be viewed from the Node Configu-
ration dialog. Some may be configured while others may not.

 Node ID: This is where the node ID number is set.

 Type: This is the description of the device (cannot be edited).

 Serial Number: This is the serial number of the device (programmed at factory and cannot be
 edited).

 Broadcast Interval: This is the interval (rate) at which the registers will be broadcast on the net
 work.

The configure registers button is used to configure each register of the device including it’s trigger and
value. configure registers button to open the Configure Registers dialog box. See Figure 14-17.

Figure 14-16

Figure 14-17

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 163

To change the Trigger for any register, select the register and click the down arrow in the trigger column for
that register. This will open a small list of trigger options. Each register maintains its own individual trigger
setting. See Figure 14-18.

When each of the registers of the node have been configured, click the save & exit button to save changes
and close the Configure Registers dialog box and return to the Node Configuration dialog.

In addition to changing the trigger, from this dialog, the Value for each register can be changed (providing
the register is writable). The numbers can be represented in decimal or in hex. Figure 14.16 is set to dis-
play in decimal. As an example, register number 1 (Digital Outputs) will directly control the outputs on the
node. By changing the Value, the outputs can be set to be on or off.

The values that may be entered are decimals that represent the binary bits that correspond to each individu-
al output.

 Each non-controller node has unique register assignments. Refer to the actual product manual for
 details regarding register assignments.

Figure 14-18

Decimal Number Value 128 64 32 16 8 4 2 1 0
Corresponding Real

World Output
8 7 6 5 4 3 2 1 All

Off

Examples: If Decimal Number Value = 128, then Real World Output 8 is ON.
 If Decimal Number Value = 8, then Real World Output 4 is ON.
 If Decimal Number Value = 40, then Real World Outputs 4 and 6 are both ON.

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 164

OptiCAN Node List Notes

Notes can be added to the list of nodes to help with documentation and service later. This is accessed from
the OptiCAN Configuration Tool. To access this feature, in the Divelbiss OptiCAN Configuration Tool window,
use the Reports Menu and select Node List.

The Node List Report window will open. Place the cursor under the Note Heading next to the node of choice.
Simply type in the notes for that node. See Figure 14-19.

The node list and notes may be saved and printed for future reference.

Figure 14-19

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 165

J1939 Networking / NMEA 2000
J1939 is a standard maintained by the Society of Automotive Engineers (SAE) that defines how information
is transferred across a network to allow devices such as engine ECUs to communicate information such as
engine speed, engine RPM, etc. to other ECUs or devices. J1939 is essentially a software specification /
protocol that operates on a CAN network. NMEA 2000 is based on J1939 with additional special message
requirements. As NMEA 2000 is based on J1939, many of the menus and configuration items are generally
the same and interchangeable except for noted differences.

J1939 uses CAN 2.0B as its structure. It is typically used on commercial vehicles such as tractor trailers and
construction equipment.

 This manual section is provides the basics for installing and configuring J1939 support in EZ
 LADDER Toolkit, using the function blocks and additional features available in EZ LADDER for
 J1939. It is not intended as a complete J1939 reference document. As such, prior knowledge
 of J1939 is recommended.

 EZ LADDER Toolkit support for J1939 allow for receive and transmitting data on the J1939 bus
 including items such as PGN request, BAM (global) and CM (specific destination). EZ LADDER also
 supports J1939 bus address claim.

J1939 PGN Overview

J1939 communication is based on the Parameter Group Number, otherwise known as the PGN. PGNs are
defined based on a compilation of information. For example, PGN 61444 is identified as Electronic Engine
Controller 1. Items transmitted with this PGN designation would be engine speed, driver’s demand torque,
etc. PGNs are typically transmitted by ECUs (and other devices) at a set rate. By reading appropriate PGNs,
controllers and targets can use the data as setpoints and values in the ladder diagram program. Additionally,
EZ LADDER Toolkit programs can transmit data using J1939 (P-Series targets only).

 Most PGNs are eight bytes in length, but can be a different length. If data isn’t available (typically if
 the PGN is not supported), the data will return a 0xFF. If a 0xFE is returned, this signifies an error.

J1939 SPN Overview

When PGNs are received, they typically include multiple data points (transmitted as part of the PGN). For
example, PGN 61444 would be Electronic Engine controller 1. When PGN 61444 is received, it contains
multiple data points and these points are stored in the data based on byte number. In EZ LADDER Toolkit,
these parameters are accessed by their Suspect Parameter Numbers (SPNs).

Installing J1939 in EZ LADDER Toolkit

 The information contained in this manual regarding J1939 is specifically for the P-Series PLC on a
 Chip based targets only. For M-Series based targets, refer to the M-Series EZ LADDER Toolkit
 Manual.

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 166

When installing the J1939 support in the project, many configuration settings and parameters (including
optional items) must be completed. It is recommended that you have a complete picture of how you want to
implement J1939 and use it.

J1939 is installed on a per project (program) basis. Once the J1939 settings are configured, they are stored
in the actual ladder diagram project. Actual menus steps to reach the J1939 configuration may vary based
on the actual controller used, but the configuration itself is always the same. Divelbiss standard controllers
based on P-Series PLC on a Chip (HEC-P5000, VB-2000, etc) are configured based on the part number.
For details on specific targets, please see Chapter 23 - Hardware Targets.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If J1939 were installed, it would be listed
in the Devices pane under the Device section. Click the add device button. The Target’s Devices window will
open.

 A CAN port must be installed prior to installing SAE J1939/NMEA 2000. See Installing CAN
 Network Ports earlier in this chapter.

All the available devices and features for the target are shown in the Devices section. Scroll down and find
the J1939. Figure 14-20 shows the Target’s Devices window.

Select the J1939 and click ok. The J1939 Properties dialog will open. This dialog is used to specify which
CAN port is to be used as well as the J1939 Universal Settings. The configuration here will decide how
J1939 is implemented. Refer to Figure 14-21.

Figure 14-20

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 167

 Listen Only checkbox
 When this box is checked, J1939 is configured to receive J1939. The controller with this EZ LADDER
 program will receive data, but cannot transmit on the J1939 bus.

 Enable Address Claim checkbox
 When this box is checked, J1939 is configured to receive and transmit J1939 broadcast data. The
 controller with this EZ LADDER program will attempt to claim an address on the J1939 bus. With the
 address claimed, it not only receives data, but can transmit on the J1939 bus.

You should select between Listen Only mode and Enable Address Claim mode. No check boxes are re-
quired to receive J1939, but per the J1939 specification, to transmit the unit must claim an address on the
network.

 If you are only needing to receive J1939 broadcast data (no transmit), it is recommended you select
 Listen Only.

The advanced button accesses advanced configuration features such as receive and transmit buffer sizes,
PGN and BAM connections. Changing these parameters would be required if larger numbers of simultane-
ous PGNs or lager buffers were required. This information will be discussed in detail later.

Once the Universal Setting (Listen Only or Enable Address Claim) has been configured, click the add but-
ton. The J1939 Properties dialog will open. Refer to Figure 14-22.

Using the provided CAN Port drop down box, select the CAN port to use for the J1939 communication. This
should be the CAN port connected to the J1939 network.

 With the CAN port selected, other items then become available to configure. The available
 configuration items is dependent upon the mode selected previously (listen or claim address). Figure
 14-22 illustrates the dialogs configured each way.

In listen mode, the amount of configuration items is reduced significantly. Configure the items as required for
the specific application requirements for interfacing to J1939.

Figure 14-21

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 168

Configuration Items
The items that are to be configured must be configured specifically for your application requirements for
proper operation.

Bit Rate: Drop down box. Select 250K or 500K. Standard bus uses 250K.

J1939 Device/NMEA 2000 Device: Select between J1939 and NMEA 2000 network. Choose
 the appropriate network.

Preferred/Fixed Source Address: Number from 1 to 100. This is the first address that the
 controller will try and use on the J1939 network. This box works
 with the Arbitrary Address Capable box and addresses. If the
 Arbitrary Address Capable box is checked, then the Preferred/
 Fixed Address is tried first. If the address is not available on the
 network, then the controller will arbitrarily try additional
 addresses based on the limits set. If the Arbitrary Address
 Capable box is not checked, then only this one address will be
 attemped, even if it is not available. This box is not available in
 listen mode.

Claim Address ModeListen Only Mode

Figure 14-22

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 169

Arbitrary Address Capable: If this box is checked, then the Preferred/Fixed Address is tried
 first. If the address is not available on the network, then the
 controller will arbitrarily try additional addresses based on the
 Address Claim Start/Stop addresses set. This box is not
 available in listen mode.

Address Claim Start Address: If arbitrary addressing is required, this is the first arbitrary
 address that will be tried.

Address Claim Stop Address: If arbitrary addressing is required, this is the last arbitrary
 address that will be tried.

Industry Group, Vehicle System These items are specific items that may be used on the J1939
Instance, Function, Function bus for communication and arbitration. These items are
Function Instance, ECU Instance, optional and would be provided by the actual J1939 bus
Manufacturer Code, Identity Number or equipment manufacturer. Note: if NMEA 2000 is selected
 instead of J1939 above, then some of these names will change
 as required by NMEA 2000.

User J1939 Database: This location box and check box for Use Standard J1939
 Database identifies the J1939 database of PGNs and SPNs to
 be used on this project. The Use Standard J1939 Database
 checkbox forces the use of the EZ LADDER Toolkit standard
 PGN and SPN database.

 EZ LADDER Toolkit supports the ability to add new PGNs and SPNs that are not currently in the
 standard database as needed. This topic will be covered in a later section.

With all the items configured, click the ok button to close dialog and save the settings. Click ok to close and
save the J1939 properties dialog.

 Up to two J1939 networks may be accessed (one for each CAN port, up to 2 maximum) by repeating
 the same steps for the additional J1939 network with a different CAN port.

Click the ok button to close the target’s properties. Click ok to close and save the Project Settings. The
J1939 is now installed and configured and is ready to be used in the ladder diagram program.

Standard J1939 Database

Included as part of EZ LADDER Toolkit is the Divelbiss Standard J1939 database. This database has been
preloaded with common J1939 PGNs (and SPNs). During the configuration previously shown, the data-
base that is used for the storing J1939 PGNs is identified. The Standard J1939 database cannot be modi-
fied (added to or deleted from). If additional PGNs are required that are not included in the Standard J1939
database, then the User J1939 database must be identified and used during the configuration. To use the
Standard J1939 database, ensure the check box Use Standard J1939 Database is checked. If a user J1939
database is to be used, then uncheck the box.

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 170

User J1939 Database

If the Standard J1939 database does not include all the PGNs that are required, the option is provided to
use a User J1939 database. This custom database may be configured and used to store the PGN list for
your projects.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If J1939 were installed, it would be listed
in the Devices pane under the Device section. Select the J1939 (under Network) and click the properties
button. The J1939 Properties dialog will open. Select the CAN port for the J1939 and click the properties
button. The CAN port Properties window will open.

A built-in editor is included in EZ LADDER Toolkit for creating and editing user J1939 databases. Refer to
Figure 14-23. To create a new user J1939 database, click the create new button. The Edit J1939 database
window will open. Refer to Figure 14-23.

Click into the fields provided and add the PGN (PGN number), PGN Description, Priority Broadcast Rate
DLS, and Transport Type for each PGN. If this for NMEA 2000, click the NMEA Message checkbox and if it
is a Fast Packet for NMEA 2000, click the Fast Packet checkbox.

For each PGN added in the top pane, SPNs may be added in the bottom pane. With the PGN selected in
the top PGN pane (Parameter Group Information), add SPNs in the SPN pane at the bottom (Parameter
Information). The data for the PGN/SPN is provided by the manufacturer of the device or the J1939/NMEA
2000 specification. Enter the data for SPN, Description, Start Byte, Start Bit, Bit Length, Gain, Offset and
Data Type. For NMEA 2000, the SPN is the Field.

Use the save and saveas buttons to set the filename of the user J1939 database and save (update) as new
PGNs are added. The close button is used to close the editor.

Figure 14-23

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 171

 Since the J1939 database cannot be edited, if you require PGNs from the Standard J1939 database
 and additional not in the database, you will need to add ALL the PGNs that you require to the User
 J1939 database.

 If you need some additional PGNs not included in the standard database, you may also copy the
 standard database to a new file, rename it, then edit it adding additional PGNs needed for your
 project.

Refer to Figure 14-22 To select your User J1939 database, uncheck the Use Standard J1939 Database and
click the browse button. Browse to the location your J1939 database is located and click open. The loca-
tion of your User J1939 database should now be locate in the box. Ensure all the J1939 settings are correct
and click ok with the User J1939 Database selected to close the CAN port Properties window. Exit out of all
the remaining project settings windows. Be sure to save your ladder diagram project.

Advanced J1939 Configuration

EZ LADDER Toolkit provides advanced configuration options for J1939. These configuration items may be
adjusted if the default configuration is not sufficient for the application.

With the J1939 Properties window open (See Figure 14-20), click the advanced button. The J1939 Ad-
vanced Properties window will open. The currently shown settings are the default transmit and receive con-
figuration items (assuming that no advanced changes were made previously). See Figure 14-24.

From this window, items such as transmit and receive buffer size, number of PGNs, etc. may be adjusted.

Rx Buffer Size: Size of Rx buffer to hold data before it is processed. (Should not
 typically need adjustment).

Figure 14-24

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 172

Maximum Rx Parameter Groups: Total number of Rx PGNs that can be setup to receive simultaneously.

Maximum Rx Parameters: Total number of Rx Parameters that can be setup to receive
 simultaneously.
Maximum Simultaneous Rx Maximum number of Rx BAM messages that can be received
BAM Connections: simultaneously.

Maximum Simultaneous Rx Maximum number of Rx Multipacket Connection sessions that can
Connect Connections: be open at one time.

Tx Buffer Size: Size of Tx buffer holding data to be sent immediately. (Should not
 typically need adjustment).

Maximum Tx Parameter Groups: Maximum number of PGNs that can be in the cyclic send queue at a
 time.

Maximum Tx Parameters: Maximum number of Parameters that can be in the cyclic send queue
 at a time.

Maximum Simultaneous Tx Maximum number of Tx BAM messages that can be setup at one time.
BAM Connections:

Maximum Simultaneous Tx Maximum number of Tx Multipacket Connection sessions that can be
Connect Connections: open at one time.

 These advanced parameters should only be adjusted if necessary for the application. Adjusting these
 numbers affects the amount of RAM used and available for the entire ladder diagram project during
 Compilation. Caution must be taken to not use excessive RAM for J1939 unnecessarily as it is
 possible to run out of RAM memory.

Receiving Data with J1939

With the J1939 network configured in the Project Settings of EZ LADDER Toolkit, data may be received
in the ladder diagram. To receive data using J1939 (NMEA 2000), the J1939_RX_PGN Function block is
used. This function block is automatically added to the functions drop down list when J1939/NMEA 2000 is
installed in the project settings.

To receive data, use the Functions drop down box on the toolbar and select J1939_RX_PGN. Click the
insert function button and then click in the ladder diagram workspace where you want to insert the J1939_
RX_PGN function block.

The J1939 RX Properties dialog box will open. This box is used to configure this specific instance of the
J1939_RX_PGN function used in the program. Refer to Figure 14-25.

 The J1939 RX Properties must be configured for each insert of a J1939_RX_PGN function block as
 each insert is a unique instance of the function block.

Using the drop down menu, select the CAN port for the J1939/NMEA 2000 network. Along the left side of the
dialog, below the CAN port drop down, is a pane with a list of PGNs (PGNs in the configured database). By

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 173

selecting a PGN, the SPN pane below populates with the supported SPNs for the highlighted PGN. As differ-
ent PGNs are selected (highlighted) in the PGN pane, the PGN settings to the right change as do the SPN
pane.

Select the PGN to receive data from. The SPN pane will update. Select the desired SPN in the SPN pane.
The SPN/Field setting will update with information based on the J1939/User database.

 The Gain, Offset and Request Type are stored in the database but may be overridden for this
 instance (of the J1939_RX_PGN) function block.

The Source Address area determines what J1939 address are may be received from for the selected PGN.
If the Receive from all addresses is checked, then any device on the network that broadcasts this PGN
will be received from. If only specific a specific J1939 network address should be received from, uncheck
the Receive from all addresses checkbox and use the Source Address to Receive From box to set the
J1939 network address.

 The source of the J1939 broadcasts received may be configured as Receive from all addresses or
 may be limited to a specific address based on the Source Address area settings.

In addition to controlling which Source Addresses are received, the receive function block may be configured
based on a Destination address in the Destination Address section. Using these settings, the function block
will receive all global broadcasts of a PGN (Receive addressed to any device), broadcasts to this specific
controller or device (Receive only addressed to this device) or it may listen in on a broadcast to a specific
address broadcast (Specify Dest. Address to Receive). These configuration items are set by check boxes
and an Address box in the Destination Address area.

 The function block instance may be configured to receive all global broadcasts to this PGN, only
 broadcasts to this specific address or to any specific address based on the settings in the Destination
 Address area.
The next step is to identify where the SPN data that is received will be stored. All J1939 data is stored in
variables. To set the variable(s) used, click the map variable button. The Map Variable dialog will open.

Figure 14-25

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 174

Using the browse buttons, select the variable to store the received data to (Rx Data) and optionally, select
the variable to store the received data status (ie valid, not seen, etc). Click ok when the variables have been
set. Refer to Figure 14-26.

Repeat these steps for any SPN of the selected PGN you want to receive data from in this instance of the
J1939_RX_PGN function block. Figure 14-27 shows two SPNs selected and mapped to variables for PGN
61442.

 Multiple SPNs may be mapped to a variables in one J1939_RX_PGN function block instance
 providing that all the SPNs are part of the same PGN (selected PGN).

Click ok when all the SPNs required have been mapped to variables. The function block is now placed in the
ladder diagram.

The EN (enable) should be tied to the left power rail or using a contact to control when the specific J1939_
RX_PGN function block is enabled and receives data. The Q output goes true when the data is received for
one ladder diagram scan and then goes false on the next ladder diagram scan.

The ER is the error output. It must be connected to an integer variable. This variable will store the status of
the last receive (0= Valid Data or No Error, -1 = PGN Not Seen, -2 = PGN Failed Update or No data received
in last 5 seconds).

Figure 14-26

Figure 14-27

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 175

The SA is the Source Address output. It must be connected to an integer variable. This variable will store the
Source Address of the last receive (which address this PGN was received from).

The DA is the Destination Address output. It must be connected to an integer variable. This variable will
store the Destination Address of the last receive if the PGN had a specific destination in the broadcast
packet. If the broadcast was a global broadcast, then the DA does not apply.

Figure 14-28 illustrates a complete J1939_RX_PGN function block inserted in a ladder diagram program.

SPN Status Mapped Variables
The mapped status (not data) variables for the SPNs of the function block have their own error and status
reporting. The SPN error status reporting is only valid if the SPN is set as STANDARD or STATE in the
J1939 Database). The SPN status is 0 = Valid, -1 = Not Seen, -2 = Data Error, -3 = Not Supported -4 = Data
Reserved.

Transmitting Data with J1939

With the J1939 network configured in the Project Settings of EZ LADDER Toolkit, data may be transmitted
using the ladder diagram. To transmit data using J1939 (NMEA 2000), the J1939_TX_PGN Function block is
used. This function block is automatically added to the functions drop down list when J1939/NMEA 2000 is
installed in the project settings.

To transmit data, use the Functions drop down box on the toolbar and select J1939_TX_PGN. Click the
insert function button and then click in the ladder diagram workspace where you want to insert the J1939_
TX_PGN function block.

The J1939 TX Properties dialog box will open. This box is used to configure this specific instance of the
J1939_TX_PGN function used in the program. Refer to Figure 14-29.

 The J1939 RX Properties must be configured for each insert of a J1939_RX_PGN function block as
 each insert is a unique instance of the function block.

Figure 14-28

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 176

Using the drop down menu, select the CAN port for the J1939/NMEA 2000 network. Along the left side of the
dialog, below the CAN port drop down, is a pane with a list of PGNs (PGNs in the configured database). By
selecting a PGN, the SPN pane below populates with the supported SPNs for the highlighted PGN. As differ-
ent PGNs are selected (highlighted) in the PGN pane, the PGN settings to the right change as do the SPN
pane.

Select the PGN to transmit data as. The SPN pane will update. Select the desired SPN in the SPN pane.
The SPN/Field setting will update with information based on the J1939/User database.

The Destination Address area determines the type of J1939 broadcast. If set to 255, then the broadcast is
global and will not have a specific destination address. If the Destination Address is set to a specific number,
then the broadcast is sent with a that specific destination address.

 Destination address may not be settable to a specific address. Specific address or global is also
 dependent upon the PGN/SPN selected and the database settings.

The PGN Settings are based on the settings from the J1939/User database. These values may be adjusted
for this instance of the function block. The adjustable values include the Priority and Broadcast Rate. Addi-
tionally, checkboxes are provided for NMEA 2000 optional settings (PGN Access, Priority Access and B.Cast
Rate Access). Refer to the NMEA 2000 specification for details on these configuration items.

 The Priority and Broadcast Rate for the PGN are stored in the database but may be overridden for
 this instance (of the J1939_TX_PGN) function block.

The SPN Settings are based on the settings from the J1939/User database. These values may be adjusted
for this instance of the function block. The adjustable values include the Gain and Offset.

 The Gain and Offset for the SPN are stored in the database but may be overridden for this instance
 (of the J1939_TX_PGN) function block.

Figure 14-29

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 177

The next step is to identify where the SPN data that will be broadcast will be gathered from. All J1939 broad-
cast data must be mapped from variables. To set the variable(s) used, click the map variable button. The
Map Variable dialog will open. Using the browse buttons, select the variable to gather the transmit data
from (Tx Data). For NMEA 2000 Commanded Data, select the variable for the Rx Command (NMEA2K).
Click ok when the variables have been set. Refer to Figure 14-30. Refer to the NMEA 2000 specification
regarding Commanded Data.

 Double-clicking the SPN will open the Map Variable dialog.

Repeat these steps for any SPN of the selected PGN you want to transmit data as in this instance of the
J1939_TX_PGN function block. Figure 14-31 shows one SPN selected and mapped to variables for PGN
61442.

 Multiple SPNs may be mapped to a variables in one J1939_TX_PGN function block instance
 providing that all the SPNs are part of the same PGN (selected PGN).

Click ok when all the SPNs required have been mapped to variables. The function block is now placed in the
ladder diagram.

The EN (enable) should be tied to the left power rail or using a contact to control when the specific J1939_
TX_PGN function block is enabled and transmits data. The Q output is true when the function block is
enabled.

When the Enable input is true, the function block is active and the PGN/SPNs will broadcast based on the
rates set in the database or the overridden values when the function block was placed. If the Enable is false,
the function block is disabled and the PGN/SPNs will not transmit (broadcast).

Figure Figure 14-32 illustrates a complete J1939_TX_PGN function block inserted in a ladder diagram pro-
gram.

Figure 14-30

Figure 14-32

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 178

PGN Request

 J1939/NMEA 2000 PGN request is supported in EZ LADDER Toolkit. If a specific PGN is required
 and it is not broadcast on a schedule or if the PGN data is required more often than the device is
 broadcasting it (if the broadcast rate of the PGN is 10 seconds, but you need the data every 4
 seconds), the PGN Request may be used. The PGN Request is exactly as it’s name implies, it re
 quests the device to broadcast the PGN.

This feature is accessed in the J1939_RX_PGN function block. With a PGN and SPN selected, a drop-down
box is available in the SPN/Field Settings area of the Properties window. Refer to Figure 14-33. Mapped
variables to receive the data also required.

When the Request Type is set to J1939_REQUEST, the controller will request the device broadcast the
PGN. The request is sent every 1 second. The NMEA_Request is the NMEA 2000 version of the PGN re-
quest.

BAM

In the event that data needs to be transmitted that is larger than the standard 16 bytes for the normal J1939
PGN/SPN communication, J1939 also provides the BAM message. EZ LADDER Toolkit support the BAM
message. Generally, the BAM message will take larger amounts of data that need transmitted an break it
into smaller sizes. The J1939 BAM message will transmit the information regarding the message size and
number of packets that are required and then transmit the packets of data. The data is transmitted with a 50
millisecond transmit time then waits 50 milliseconds to send the next packet. This repeats until all the data of
the BAM message has been transmitted. The BAM message is a global transmit.

Figure 14-31

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 179

 The message Transport Type is defined in the database and it determines the type of message

 (None, BAM or DIRECT_CONNECT). To set a PGN as a BAM message, it must be configured in the
 J1939/User database. Figure 14-34 illustrates the configuration options drop-down boxes.

The controller will handle all the data manipulation required to transmit BAM messages if configured to use
BAM in the database.

DIRECT CONNECT

J1939 Direct Connect is supported in EZ LADDER Toolkit and can be selected as the Transport Type for a
PGN in the J1939/User database. No additional configuration is required. Refer to the J1939 specification
for more information regarding Direct Connect.

Figure 14-33

Drop Down Box. Select
from NOT_REQUEST-
ED, J1939_REQUEST
and NMEA_REQUEST

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 180

Native CAN Communications
P-Series EZ LADDER Toolkit and targets support Native CAN communications that allow transmitting
and receiving CAN data frames via the CAN port. The Native CAN communications is only available us-
ing Structured Text commands. Using these commands and custom structured text functions and function
blocks, you can control the CAN bus, receive data, send data, minitor the status and set the bit rate.

 Native CAN communications is only available using Structured Text functions.

 The use of Native CAN communications provides a versatile method of interacting with CAN net
 works using 11-bit or 29-bit communications. Since the communications is at the raw frame level. a
 detailed understanding of CAN networking is required for programming, including building and under
 standing CAN frames.

The following EZ LADDER structured text built-in functions are used for Native CAN communications.

As the Native CAN communications are all at the frame level, the programming requires the structured text
to manage the communications from monitoring the CAN network status, resetting it if necessary, receiving
the CAN frames and transmitting CAN frames. The CAN data is built as arrays, so the data arrays will need

Figure 14-34

EZ_CAN_Reset
EZ_CAN_Rx
EZ_CAN_SetBitRate

EZ_CAN_Status
EZ_CAN_Tx

Chapter 14 CAN Networking

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 181

to be built using structured text. Each function has its own return status bit with error detection. It is up to the
programming to implement the entire communications structure necessary from configuration, data in , data
out and error detection using the available structured text functions.

For more details on using Structured Text and Structured Text target specific functions, refer to Chapter 26 -
Structured Text and Appendix B - Target Specific ST Function Reference.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 182

CHAPTER 15
SPI Devices and Support

This chapter provides basic information to understand how to install, configure and use the
SPI Devices and SPI features in the EZ LADDER Toolkit.

Chapter Contents
SPI Bus Devices ..183

Installing an SPI Bus ...183

Installing Supported SPI Bus Devices...185
LS7366R 32 Bit Quadrature Counter ...185
MCP3204 4 Channel 12 Bit Analog to Digital Converter190
MCP3208 8 Channel 12 Bit Analog to Digital Converter193
ADS8341 4 Channel 16 Bit Analog to Digital Converter196
DAC8552 2 Channel 16 Bit Digital to Analog Converter199
MAX31855 Single Channel Thermocouple Input202
MAX31856 Single Channel Thermocouple Input205
MCP4922 2 Channel 12 Bit Digital to Analog (D/A) Converter209
Everspin MRxHxx Magnetoresistive RAM ..212
MAX22007 Digital to Analog Converter (DAC) IC214

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 183

SPI Bus Devices
EZ LADDER Toolkit provides built-in support for the use of several SPI devices. These supported devices
are easily integrated with PLC on a ChipTM and used via EZ LADDER Toolkit variables, function blocks and
Structured Text. Generally, these devices are installed and configured using the Project Settings and are not
supported on all targets. These devices may be factory implemented on other hardware targets.

Installing an SPI Bus
Before any of the above listed / supported SPI devices may be installed in EZ LADDER Toolkit, an SPI bus
must be installed.

 SPI Port availability is based on actual hardware targets. Refer to the target’s User Manual or
 Chapter 23 - Hardware Targets to determine if SPI Ports are supported. SPI devices must be
 connected to the P-Series PLC on a ChipTM per design guidelines for proper operation.

 Installing SPI or copying ladder program components with SPI into a ladder diagram for a target that
 does not support SPI or has factory set SPI settings will cause the hardware target to malfunction.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If any SPI port were installed, it would be
listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s Devices win-
dow will open. All the available devices and features for the target are shown in the Devices section. Scroll
down and find the SPI ports (SPI0, SPI1, etc). Figure 15-1 shows the Target’s Devices window.

Figure 15-1

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 184

Select SPIx and click ok. The SPI Properties dialog will open. See Figure 15-2. All SPI Devices require Chip
Select pins, but they are typically selected / identified when the actual SPI device is installed. This dialog al-
lows for reserving Chip Select pins specifically when using structured text only.

 Each SPI Device requires the use of a Chip Select pin (GPIO) from the P-Series PLC on a ChipTM. As
 chip select pins are reserved, they should not / cannot be used in a program as digital I/O. Designs
 must identify all chip select pins while mapping the digital I/O. Each device on an SPI bus required its
 own individual chip select pin.

 While each device requires a single chip select pin. Multiple devices may be connected to an SPI
 port provided that SPI device is compatible and supported.

If using structured text, Click the add button. The SPI CS dialog will open. Using the provided drop-down CS
Output menu, select the GPIO to reserve as a chip select pin for the SPI bus for structured text only. Repeat
this step until all the required chip selects have been installed and are listed in the Reserved Chip Select
Pins pane of the SPI Properties dialog. See Figure 15-3. If not using structured text, click ok to close and
exit the SPI Properties dialog and return to the Target Properties window.

If using structured text, when all the chip selects have been reserved, click ok. The Target’s Devices window
will close and the previous target properties window will now list the SPI port as an installed device.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure
to save the ladder diagram project. The SPI port is now installed and ready to be used and additional SPI
devices may be installed and used in the ladder diagram.

Figure 15-2

Figure 15-3

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 185

Installing Supported SPI Bus Devices
The following SPI devices are supported by EZ LADDER Toolkit.

LS7366R 32 Bit Quadrature Counter

The LS7366R is a 32 bit Quadrature Counter integrated circuit with an SPI interface. EZ LADDER Toolkit
has built-in software support for using this device on an SPI port.

 The LS7366R is a hardware device and requires additional circuitry and knowledge to interface it an
 EZ LADDER supported target. This chapter discusses the basics of using the LS7366R in the
 ladder diagram and minor references to hardware when needed.

 LS7366R / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the LS7366R in the Ladder Diagram Project

To be able to use the LS7366R in an EZ LADDER Toolkit ladder diagram project, the LS7366R must first be
installed and configured. As the PLC on a ChipTM is the most commonly used target for the LS7366R, it will
be used as an example to install and configure the LS7366R.

The LS7366R is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If a LS7366R device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the LS7366R. Figure 15-4 shows the Target’s Devices window.

Figure 15-4

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 186

Click ok. The LS7366R Properties dialog will open. This dialog selects the SPI Port and Chip Select to be
used for this LS7366R device. See Figure 15-5.

 Multiple LS7366R devices may be added to an SPI port provided that each device has a unique chip
 select output specified.

 The SPI port must be installed previously or no SPI ports will show available in drop down
 configuration menus.

Click the add button. An additional LS7366R Properties window will open.

Select the SPI port from the drop down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). With these two devices selected, additional channel information will
be available to configure. See Figure 15-6. Any chip select pins reserved for structured text will not be vis-
ible in the drop-down menu.

The LS7366R may be configured to run in several modes. Each mode has specific operation parameters
and features that may be utilized in the ladder diagram project. These modes and parameters are config-
ured in this dialog box.

 Refer to the LS7366R integrated circuit data sheet for details to understand options, features and
 configurations. Failure to review the data sheet may result in a loss of understanding of how to
 configure and use this device.

 As a difference between the LS7366R counter and other SPI devices, the LS7366R does not use
 variables, but instead relies on a function block to provide access to counter functionality in the
 ladder diagram project.

When the LS7366R is configured, click ok to close the LS7366R Properties dialog # 2. It is now listed in the
LS7366R Properties dialog #1. Click ok to close the LS7366 Properites dialog #1.

Figure 15-5

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 187

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure
to save the ladder diagram project. The SPI port is now installed and ready to be used and additional SPI
devices may be installed and used in the ladder diagram.

LS7366R Configuration Parameters

All modes are controlled by the hardware settings listed. Functionality is achieved using a function block in
the EZ LADDER Toolkit.

 Quadrature Mode: Non Quadrature (A=CLK, B=DIR)
 A pulse on the A input will increment the counter or decrement
 the counter based on the B input.

 X1
 The A and B inputs are used in X1 mode for use with biphase
 encoders. The count value changes once for each biphase
 cycle.

 X2
 The A and B inputs are used in X2 mode for use with biphase
 encoders. The count value changes 2 times X1 mode given the
 same input signal.

 X4
 The A and B inputs are used in X4 mode for use with biphase
 encoders. The count value changes with each input transition,
 4 times faster than X1 given the same input signal.

Figure 15-6

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 188

 Count Mode: Free Running
 When counting pulses, the counter will continue to count in
 either direction and wrap if the count goes larger (or smaller)
 than the standard integer (32 bit).

 Single Cycle
 When counting pulses, the counter will stop counting in
 either direction if the count goes larger (or smaller) than the
 standard integer (32 bit). A Reset or Load is required to restart
 counting.

 Range Limit
 Counting range is limited between zero (0) and the PD (DTR)
 input on the CNTR_LS7366R function block. The LD function
 block input must be used to load the DTR (one scan cycle).

 Modulo N
 The counter value will be equal to the value of the input signal
 divided by the value loaded in DTR, plus 1 (DTR+1). If DTR is
 1, then the count will equal the input signal divided by 2 or will
 count at 1/2 the rate of the input signal.

 Index Mode: Disable Index
 The device’s Index input will have no affect on operation.

 Load CNTR
 Configures the device’s Index input to act as a load counter.
 This will load the value of the function block input PD (DTR) as
 the actual count.

 Reset CNTR
 Configures the device’s Index input to act as a reset counter.
 This will reset the actual counter to zero.

 Load OTR
 Configures the devices Index input to transfer the actual count
 into the OTR register. The OTR register is a temporary register
 for storing the count.

 Asynchronous Index
 Asynchronous index mode. Valid in all modes.

 Synchronous Index
 Synchronous index mode. Only valid in quadrature mode.

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 189

 Clock Filter: Divide by 1
 The clock input to the device is divided by 1 to create a filter
 frequency. This filter frequency must be at least 4 times larger
 than the frequency on the device A input.

 Divide by 2
 The clock input to the device is divided by 2 to create a filter
 frequency. This filter frequency must be at least 4 times larger
 than the frequency on the device A input.

 LFLAG / DFLAG: Flag on IDX
 This check box enable the index flag bit that is output on the
 status register (ST of the CNTR_LS7366R function block).

 Flag on CMP
 This check box enable the compare flag bit that is output on the
 status register (set if DTR = actual count).

 Flag on BW
 This check box enable the borrow flag bit that is output on the
 status register (set if counter wraps negative (borrow)).

 Flag on CY
 This check box enable the borrow flag bit that is output on the
 status register (set if counter wraps positive (carry)).

Using the LS7366R in the Ladder Diagram Project

To gain the functionality of the SPI LS7366R counter integrated circuit, you must use the CNTR_LS7366R
function block. This function block has multiple inputs and outputs. These inputs and outputs can function
in different modes based on the configuration of the actual LS7366R in the ladder diagram projects.

 It is important to reference the LS7366R data sheet for operation modes and to understand registers.
 A thorough understanding of the LS7366R is required to properly configure and use the device
 correctly.

For details on the use of the CNTR_LS7366 function block, refer to Appendix A - Function Reference.

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 190

MCP3204 4 Channel 12 Bit Analog to Digital Converter

The MCP3204 is a 12 bit, 4 channel analog to digital converter integrated circuit with an SPI interface. EZ
LADDER Toolkit has built-in software support for using this device on an SPI port.

 The MCP3204 is a hardware device and requires additional circuitry and knowledge to interface it an
 EZ LADDER supported target. This chapter discusses the basics of using the MCP3204 in the
 ladder diagram and minor references to hardware when needed.

 MCP3204 / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the MCP3204 in the Ladder Diagram Project

To be able to use the MCP3204 in an EZ LADDER Toolkit ladder diagram project, the MCP3204 must first
be installed and configured. As the PLC on a ChipTM is the most commonly used target for the MCP3204, it
will be used as an example to install and configure the MCP3204.

Figure 15-7

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 191

The MCP3204 is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If an MCP3204 device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the MCP3204. Figure 15-8 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus.

Click ok. The MCP3204 Properties dialog will open. This dialog selects the SPI Port and Chip Select to be
used for this MCP3204 device. See Figure 15-9.

Figure 15-8

Figure 15-9

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 192

 Multiple MCP3204 devices may be added to an SPI port provided that each device has a unique chip
 select output specified.

Click the add button. An additional MCP3204 Properties window will open.

Select the SPI port from the drop down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). See Figure 15-10. Any chip select pins reserved for structured text
will not be visible in the drop-down menu.

With the SPI Port and CS Output selected, the Channel enable check boxes are now functional. Place a
checkmark in the channels that are to be used by clicking in the check box next to CH0 to CH3. As a chan-
nel is enabled, an automatic Variable name is shown.

 The variable names are automatically created when a channel is enabled. The name can be
 changed by typing the desired variable name in the Variable Name box for each channel.

 Refer to the MCP3204 integrated circuit data sheet for details on the MCP3204 and its limitations.

The MCP3204 analog input (analog to digital converter channel values) are always stored and can be ac-
cessed in the ladder diagram program by the variable (names) configured in the MCP3204 Properties # 2
dialog.

When the MCP3204 is configured, click ok to close the MCP3204 Properties dialog # 2. It is now listed in
the MCP3204 Properties dialog #1. Click ok to close the MCP3204 Properites dialog #1.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure
to save the ladder diagram project. The MCP3204 device is now installed and ready to be used in the ladder
diagram.

 This installation is to configure the MCP3204 as a device in EZ LADDER Toolkit and the target. The
 MCP3204 requires additional circuitry to amplify and or scale real world analog signals that are
 separate from the MCP3204 and EZ LADDER Toolkit.

Figure 15-10

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 193

Using the MCP3204 in the Ladder Diagram Project

The MCP3204 analog input (analog to digital converter channel values) are always stored and can be ac-
cessed in the ladder diagram program by the variable (names) configured in the MCP3204 Properties # 2
dialog.

During the installation process of the MCP3204, the variables should automatically be created as Integers.
As the MCP3204 is a 12 bit analog to digital converter, the actual integer value for each channel will range
from 0 to 4095 with 0 being 0 or the low end and 4095 being the maximum or high end. These variables may
be used as inputs to function blocks in the ladder diagram program.

Figure 15-11 is an example ladder diagram using a variable from the MCP3204.

MCP3208 8 Channel 12 Bit Analog to Digital Converter

The MCP3208 is a 12 bit, 8 channel analog to digital converter integrated circuit with an SPI interface. EZ
LADDER Toolkit has built-in software support for using this device on an SPI port.

 The MCP3208 is a hardware device and requires additional circuitry and knowledge to interface it an
 EZ LADDER supported target. This chapter discusses the basics of using the MCP3208 in the
 ladder diagram and minor references to hardware when needed.

 MCP3208 / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the MCP3208 in the Ladder Diagram Project

To be able to use the MCP3208 in an EZ LADDER Toolkit ladder diagram project, the MCP3208 must first
be installed and configured. As the PLC on a ChipTM is the most commonly used target for the MCP3208, it
will be used as an example to install and configure the MCP3208.

Figure 15-11

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 194

The MCP3208 is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If an MCP3208 device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the MCP3208. Figure 15-12 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus.

Click ok. The MCP3208 Properties dialog will open. This dialog selects the SPI Port and Chip Select to be
used for this MCP3208 device. See Figure 15-13.

Figure 15-12

Figure 15-13

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 195

 Multiple MCP3208 devices may be added to an SPI port provided that each device has a unique chip
 select output specified.

Click the add button. An additional MCP3208 Properties window will open.

Select the SPI port from the drop down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). See Figure 15-14. Any chip select pins reserved for structured text
will not be visible in the drop-down menu.

With the SPI Port and CS Output selected, the Channel enable check boxes are now functional. Place a
checkmark in the channels that are to be used by clicking in the check box next to CH0 to CH7. As a chan-
nel is enabled, an automatic Variable name is shown.

 The variable names are automatically created when a channel is enabled. The name can be
 changed by typing the desired variable name in the Variable Name box for each channel.

 Refer to the MCP3208 integrated circuit data sheet for details on the MCP3208 and its limitations.

The MCP3208 analog input (analog to digital converter channel values) are always stored and can be ac-
cessed in the ladder diagram program by the variable (names) configured in the MCP3208 Properties # 2
dialog.

When the MCP3208 is configured, click ok to close the MCP3208 Properties dialog # 2. It is now listed in
the MCP3208 Properties dialog #1. Click ok to close the MCP3208 Properites dialog #1.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure
to save the ladder diagram project. The MCP3208 device is now installed and ready to be used in the ladder
diagram.

 This installation is to configure the MCP3208 as a device in EZ LADDER Toolkit and the target. The
 MCP3208 requires additional circuitry to amplify and or scale real world analog signals that are
 separate from the MCP3208 and EZ LADDER Toolkit.

Figure 15-14

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 196

Using the MCP3208 in the Ladder Diagram Project

The MCP3208 analog input (analog to digital converter channel values) are always stored and can be ac-
cessed in the ladder diagram program by the variable (names) configured in the MCP3208 Properties # 2
dialog.

During the installation process of the MCP3208, the variables should automatically be created as Integers.
As the MCP3208 is a 12 bit analog to digital converter, the actual integer value for each channel will range
from 0 to 4095 with 0 being 0 or the low end and 4095 being the maximum or high end. These variables may
be used as inputs to function blocks in the ladder diagram program.

Figure 15-15 is an example ladder diagram using a variable from the MCP3204.

ADS8341 4 Channel 16 Bit Analog to Digital Converter

The ADS8341 is a 16 bit, 4 channel analog to digital converter integrated circuit with an SPI interface. EZ
LADDER Toolkit has built-in software support for using this device on an SPI port.

 The ADS8341 is a hardware device and requires additional circuitry and knowledge to interface it an
 EZ LADDER supported target. This chapter discusses the basics of using the ADS8341 in the
 ladder diagram and minor references to hardware when needed.

 ADS8341 / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the ADS8341 in the Ladder Diagram Project

To be able to use the ADS8341 in an EZ LADDER Toolkit ladder diagram project, the ADS8341 must first be
installed and configured. As the PLC on a ChipTM is the most commonly used target for the ADS8341, it will
be used as an example to install and configure the ADS8341.

Figure 15-15

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 197

The ADS8341 is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If an ADS8341 device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the ADS8341. Figure 15-16 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus.

Click ok. The ADS8341 Properties dialog will open. This dialog selects the SPI Port and Chip Select to be
used for this ADS8341 device. See Figure 15-17.

Figure 15-16

Figure 15-17

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 198

 Multiple ADS8341 devices may be added to an SPI port provided that each device has a unique chip
 select output specified.

Click the add button. An additional ADS8341 Properties window will open.

Select the SPI port from the drop down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). See Figure 15-18. Any chip select pins reserved for structured text
will not be visible in the drop-down menu.

With the SPI Port and CS Output selected, the Channel enable check boxes are now functional. Place a
checkmark in the channels that are to be used by clicking in the check box next to CH0 to CH3. As a chan-
nel is enabled, an automatic Variable name is shown.

 The variable names are automatically created when a channel is enabled. The name can be
 changed by typing the desired variable name in the Variable Name box for each channel.

 Refer to the ADS8341 integrated circuit data sheet for details on the ADS8341 and its limitations.

The ADS8341 analog input (analog to digital converter channel values) are always stored and can be ac-
cessed in the ladder diagram program by the variable (names) configured in the ADS8341 Properties # 2
dialog.

When the ADS8341 is configured, click ok to close the ADS8341 Properties dialog # 2. It is now listed in the
ADS8341 Properties dialog #1. Click ok to close the ADS8341 Properites dialog #1.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure
to save the ladder diagram project. The ADS8341 device is now installed and ready to be used in the ladder
diagram.

 This installation is to configure the ADS8341 as a device in EZ LADDER Toolkit and the target. The
 ADS8341 requires additional circuitry to amplify and or scale real world analog signals that are
 separate from the ADS8341 and EZ LADDER Toolkit.

Figure 15-18

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 199

Using the ADS8341 in the Ladder Diagram Project

The ADS8341 analog input (analog to digital converter channel values) are always stored and can be ac-
cessed in the ladder diagram program by the variable (names) configured in the ADS8341 Properties # 2
dialog.

During the installation process of the ADS8341, the variables should automatically be created as Integers.
As the ADS8341 is a 16 bit analog to digital converter, the actual integer value for each channel will range
from 0 to 32767 with 0 being 0 or the low end and 32767 being the maximum or high end. These variables
may be used as inputs to function blocks in the ladder diagram program.

Figure 15-19 is an example ladder diagram using a variable from the ADS8341.

DAC8552 2 Channel 16 Bit Digital to Analog Converter

The DAC8552 is a 16 bit, 2 channel digital to analog converter integrated circuit with an SPI interface. EZ
LADDER Toolkit has built-in software support for using this device on an SPI port.

 The DAC8552 is a hardware device and requires additional circuitry and knowledge to interface it an
 EZ LADDER supported target. This chapter discusses the basics of using the DAC8552 in the
 ladder diagram and minor references to hardware when needed.

 DAC8552 / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the DAC8552 in the Ladder Diagram Project

To be able to use the DAC8552 in an EZ LADDER Toolkit ladder diagram project, the DAC8552 must first be
installed and configured. As the PLC on a ChipTM is the most commonly used target for the DAC8552, it will
be used as an example to install and configure the DAC8552.

Figure 15-19

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 200

The DAC8552 is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If an DAC8552 device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the DAC8552. Figure 15-20 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus.

Click ok. The DAC8552 Properties dialog will open. This dialog selects the SPI Port and Chip Select to be
used for this DAC8552 device. See Figure 15-21.

Figure 15-20

Figure 15-21

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 201

 Multiple DAC8552 devices may be added to an SPI port provided that each device has a unique chip
 select output specified.

Click the add button. An additional DAC8552 Properties window will open.

Select the SPI port from the drop down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). See Figure 15-22. Any chip select pins reserved for structured text
will not be visible in the drop-down menu.

With the SPI Port and CS Output selected, the Channel enable check boxes are now functional. Place a
checkmark in the channels that are to be used by clicking in the check box next to CH0 to CH1. As a chan-
nel is enabled, an automatic Variable name is shown.

 The variable names are automatically created when a channel is enabled. The name can be
 changed by typing the desired variable name in the Variable Name box for each channel.

 Refer to the DAC8552 integrated circuit data sheet for details on the DAC8552 and its limitations.

The DAC8552 analog output (digital to analog converter channel values) are always stored and can be ac-
cessed in the ladder diagram program by the variable (names) configured in the DAC8552 Properties # 2
dialog.

When the DAC8552 is configured, click ok to close the DAC8552 Properties dialog # 2. It is now listed in the
DAC8552 Properties dialog #1. Click ok to close the DAC8552 Properites dialog #1.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure
to save the ladder diagram project. The DAC8552 device is now installed and ready to be used in the ladder
diagram.

 This installation is to configure the DAC8552 as a device in EZ LADDER Toolkit and the target. The
 DAC8552 requires additional circuitry to amplify and or scale real world analog signals that are
 separate from the DAC8552 and EZ LADDER Toolkit.

Figure 15-22

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 202

Using the DAC8552 in the Ladder Diagram Project

The DAC8552 analog output (digital to analog converter channel values) are always stored and can be ac-
cessed in the ladder diagram program by the variable (names) configured in the DAC8552 Properties # 2
dialog.

During the installation process of the DAC8552, the variables should automatically be created as Integers.
As the DAC8552 is a 16 bit digital to analog converter, the actual integer value for each channel will range
from 0 to 65535 with 0 being 0 or the low end and 65535 being the maximum or high end. These variables
may be used as outputs from function blocks in the ladder diagram program.

Figure 15-23 is an example ladder diagram using a variable from the DAC8552.

MAX31855 Single Channel Thermocouple Input

The MAX31855 is a single channel cold junction compensated thermocouple input integrated circuit with an
SPI interface. EZ LADDER Toolkit has built-in software support for using this device on an SPI port. The
suffix to the MAX31855 determines the thermocouple type and range of operation. Refer to the integrated
circuit’s datasheet.

 The MAX31855 is a hardware device and requires additional circuitry and knowledge to interface it
 an EZ LADDER supported target. This chapter discusses the basics of using the MAX31855 in the
 ladder diagram and minor references to hardware when needed.

 MAX31855 / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the MAX31855 in the Ladder Diagram Project

To be able to use the MAX31855 in an EZ LADDER Toolkit ladder diagram project, the MAX31855 must first
be installed and configured. As the PLC on a ChipTM is the most commonly used target for the MAX31855, it
will be used as an example to install and configure the MAX31855.

Figure 15-23

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 203

The MAX31855 is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If an MAX31855 device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the MAX31855. Figure 15-24 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus.

Click ok. The MAX31855 Properties dialog will open. This dialog selects the SPI Port and Chip Select to be
used for this MAX31855 device. See Figure 15-25.

Figure 15-24

Figure 15-25

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 204

 Multiple MAX31855 devices may be added to an SPI port provided that each device has a unique
 chip select output specified.

Click the add button. An additional MAX31855 Properties window will open.

Select the SPI port from the drop down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). See Figure 15-26. Any chip select pins reserved for structured text
will not be visible in the drop-down menu.

With the SPI Port and CS Output selected, an automatic Variable name is shown.

 The variable name is automatically created when SPI port and CS are selected. The name can be
 changed by typing the desired variable name in the Variable Name box.

 Refer to the MAX31855 integrated circuit data sheet for details on the MAX31855 and its limitations.

The MAX31855 thermocouple input values are always stored and can be accessed in the ladder diagram
program by the variable (names) configured in the MAX31855 Properties # 2 dialog.

When the MAX31855 is configured, click ok to close the MAX31855 Properties dialog # 2. It is now listed in
the MAX31855 Properties dialog #1. Click ok to close the MAX31855 Properites dialog #1.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The MAX31855 device is now installed and ready to be used in the ladder
diagram.

 This installation is to configure the MAX31855 as a device in EZ LADDER Toolkit and the target. The
 MAX31855 requires additional circuitry to control and filter real world thermocouple signals that are
 separate from the MAX31855 and EZ LADDER Toolkit.

Using the MAX31855 in the Ladder Diagram Project

The MAX31855 thermocouple input values are always stored and can be accessed in the ladder diagram
program by the variable (names) configured in the MAX31855 Properties # 2 dialog.

Figure 15-26

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 205

During the installation process of the MAX31855, the variable should have been automatically be created
as a real. As the MAX31855 is a thermocouple input, the actual value will be equal to the current sensed
temperature in degrees celsius (oC). The type of thermocouple and range is dependent upon the actual part
number of the MAX31855 used (model determines the thermocouple type and thermocouple temperature
range).This variable may be used as inputs to function blocks in the ladder diagram program.

Figure 15-27 is an example ladder diagram using a variable from the MAX31855.

MAX31855 Error Codes

The MAX31855 may return an error code instead of a temperature based on errors detected. The following
error codes are supported:

 -9999 Thermocouple is reading open
 -9998 Thermocouple is reading shorted to ground
 -9997 Thermocouple is reading shorted to +V
 -9996 Undefined error, could be invalid or unexpected data

MAX31856 Single Channel Thermocouple Input

The MAX31856 is a single channel cold junction compensated thermocouple input integrated circuit with an
SPI interface. EZ LADDER Toolkit has built-in software support for using this device on an SPI port. The suf-
fix to the MAX31856 supports multiple thermocouple types (B, E, J, K, N, R, S, T), selected and configured
in EZ LADDER Toolkit. Refer to the MAX31856 circuit’s datasheet for more details on thermocouple types
and interface circuitry.

 The MAX31856 is a hardware device and requires additional circuitry and knowledge to interface it
 an EZ LADDER supported target. This chapter discusses the basics of using the MAX31856 in the
 ladder diagram and minor references to hardware when needed.

 MAX31856 / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Figure 15-27

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 206

Installing the MAX31856 in the Ladder Diagram Project

To be able to use the MAX31856 in an EZ LADDER Toolkit ladder diagram project, the MAX31856 must first
be installed and configured. As the PLC on a ChipTM is the most commonly used target for the MAX31856, it
will be used as an example to install and configure the MAX31856.

The MAX31855 is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If an MAX31856 device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the MAX31856. Figure 15-28 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus.

Click ok. The MAX31856 Properties dialog will open. This dialog selects the SPI Port and Chip Select to be
used for this MAX31856 device. See Figure 15-29.

 Multiple MAX31856 devices may be added to an SPI port provided that each device has a unique
 chip select output specified.

Click the add button. An additional MAX31856 Properties window will open.

Figure 15-28

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 207

Select the SPI port from the drop down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). See Figure 15-30. Any chip select pins reserved for structured text
will not be visible in the drop-down menu.

With the SPI Port and CS Output selected, an automatic Thernocouple Temperature Variable name and
Cold-Junction Temperature Variable name is shown.

 The variable names are automatically created when SPI port and CS are selected. The names can
 be changed by typing the desired variable name(s) in the Variable Name(s) boxes.

Using the Thermocouple Type drop-down menu, select the type of thermocouple that will be connected to
the device from the allowed choices.

Using the Averaging Mode drop-down menu, select the number of averaging samples to use for the tem-
perature readings from the allowed choices.

Figure 15-29

Figure 15-30

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 208

Using the Noise Rejection Filter drop-down menu, select the type noise rejection filter to use (50 Hz or 60
Hz).

 Refer to the MAX31856 integrated circuit data sheet for details on the MAX31856 and its limitations.

The MAX31856 thermocouple input values are always stored and can be accessed in the ladder diagram
program by the variable (names) configured in the MAX31856 Properties # 2 dialog.

When the MAX31856 is configured, click ok to close the MAX31856 Properties dialog # 2. It is now listed in
the MAX31856 Properties dialog #1. Click ok to close the MAX31856 Properites dialog #1.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The MAX31856 device is now installed and ready to be used in the ladder
diagram.

 This installation is to configure the MAX31855 as a device in EZ LADDER Toolkit and the target. The
 MAX31855 requires additional circuitry to control and filter real world thermocouple signals that are
 separate from the MAX31855 and EZ LADDER Toolkit.

Using the MAX31856 in the Ladder Diagram Project

The MAX31856 thermocouple input values are always stored and can be accessed in the ladder diagram
program by the variables (names) configured in the MAX31856 Properties # 2 dialog (Thermocouple Tem-
perature and Cold-Junction Temperature).

During the installation process of the MAX31856, the variable(s) should have been automatically be created
as a reals. As the MAX31856 is a thermocouple input, the actual value will be equal to the current sensed
temperature in degrees celsius (oC) and the cold-junction temperature in degrees (oC). The type of thermo-
couple and range is dependent upon how the device was configured in the Project Settings. These variables
may be used as inputs to function blocks in the ladder diagram program.

Figure 15-31 is an example ladder diagram using a variable from the MAX31856.

Figure 15-31

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 209

MAX31856 Error Codes

The MAX31856 may return an error code instead of a temperature based on errors detected. The following
error codes are supported:

 -9999 Thermocouple is reading open
 -9998 Thermocouple is reading shorted to ground
 -9997 Thermocouple is reading shorted to +V
 -9996 Undefined error, could be invalid or unexpected data

MCP4922 2 Channel 12 Bit Digital to Analog (D/A) Converter

The MCP4922 is a two channel digital to analog converter integrated circuit with an SPI interface. EZ LAD-
DER Toolkit has built-in software support for using this device on an SPI port. Refer to the MCP4922 circuit’s
datasheet for more details on interface circuitry.

 The MCP4922 is a hardware device and requires additional circuitry and knowledge to interface it an
 EZ LADDER supported target. This chapter discusses the basics of using the MCP4922 in the
 ladder diagram and minor references to hardware when needed.

 MCP4922 / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the MCP4922 in the Ladder Diagram Project

To be able to use the MCP4922 in an EZ LADDER Toolkit ladder diagram project, the MCP4922 must first
be installed and configured. As the PLC on a ChipTM is the most commonly used target for the MCP4922, it
will be used as an example to install and configure the MCP4922.

The MCP4922 is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If an MCP4922 device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the MCP4922. Figure 15-32 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus.

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 210

Click ok. The MCP4922 Properties dialog will open. This dialog selects the SPI Port and Chip Select to be
used for this MCP4922 device. See Figure 15-33

 Multiple MCP4922 devices may be added to an SPI port provided that each device has a unique chip
 select output specified.

Click the add button. An additional MCP4922 Properties window will open.

Select the SPI port from the drop down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). See Figure 15-34. Any chip select pins reserved for structured text
will not be visible in the drop-down menu.

With the SPI Port and CS Output selected, the Channel enable check boxes are now functional. Place a
checkmark in the channels that are to be used by clicking in the check box next to CH0 to CH1. As a chan-
nel is enabled, an automatic Variable name is shown.

 The variable names are automatically created when a channel is enabled. The name can be
 changed by typing the desired variable name in the Variable Name box for each channel.

Figure 15-32

Figure 15-33

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 211

 Refer to the MCP4922 integrated circuit data sheet for details on the MCP4922 and its limitations.

The MCP4922 analog output (digital to analog converter channel values) are set and can be accessed in the
ladder diagram program by the variable (names) configured in the MCP4922 Properties # 2 dialog.

When the MCP4922 is configured, click ok to close the MCP4922 Properties dialog # 2. It is now listed in
the MCP4922 Properties dialog #1. Click ok to close the MCP4922 Properites dialog #1.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure
to save the ladder diagram project. The MCP4922 device is now installed and ready to be used in the ladder
diagram.

 This installation is to configure the MCP4922 as a device in EZ LADDER Toolkit and the target. The
 MCP4922 requires additional circuitry to amplify and or scale to real world analog signals that are
 separate from the MCP4922 and EZ LADDER Toolkit.

Using the MCP4922 in the Ladder Diagram Project

The MCP4922 analog output (digital to analog converter channel values) are always controlled and can be
accessed in the ladder diagram program by the variable (names) configured in the MCP4922 Properties # 2
dialog.

During the installation process of the MCP4922, the variables should automatically be created as Integers.
As the MCP4922 is a 12 bit digital to analog converter, the actual integer value for each channel will range
from 0 to 4095 with 0 being 0 or the low end and 4095 being the maximum or high end. These variables may
be used as outputs from function blocks in the ladder diagram program.

Figure 15-35 is an example ladder diagram using a variable from the MCP4922.

Figure 15-34

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 212

Everspin MRxHxx Magnetoresistive RAM

The Everspin MRxHxx is magnetoresistive RAM integrated circuit (device) with an SPI interface. EZ LAD-
DER Toolkit has built-in software support for using this device on an SPI port. The MRxHxx device is used
in the ladder diagram as retentive memory for automatically storing retentive variables on power loss or as
memory storage (using the EEPROM_Read and EEPROM_Write) functions.

The MRxHxx device is avaiable in multiple memory sizes. The currently supported sizes and part numbers
are:
 MR25H128A 16K Bytes
 MR25H256 32K Bytes
 MR25H10 128K Bytes
 MR25H40 512K Bytes

(Refer to the Everspin MRxHxx circuit’s datasheet for more details on interface circuitry and other require-
ments.

 The Everspin MRxHxx is a hardware device and requires additional circuitry and knowledge to
 interface it an EZ LADDER supported target. This chapter discusses the basics of using the Everspin
 MRxHxx in the ladder diagram and minor references to hardware when needed.

 Everspin MRxHxx / SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the MRxHxx in the Ladder Diagram Project

To be able to use the MRxHxx in an EZ LADDER Toolkit ladder diagram project, the MRxHxx must first be
installed and configured. As the PLC on a ChipTM is the most commonly used target for the MRxHxx, it will
be used as an example to install and configure the MRxHxx.

Figure 15-35

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 213

The MRxHxx is configured using the Project Settings. Using the Project Menu, choose Settings. The Proj-
ect Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If the MRxHxx device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the MRxHxx. Figure 15-36 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus.

Click ok. The Everspin MRxHxx Properties dialog will open. This dialog selects the SPI Port, Chip Select,
Part number and memory allocation to be used for this Everspin MRxHxx device. See Figure 15-37

Figure 15-36

Figure 15-37

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 214

Select the SPI port from the drop-down menu and select the general purpose output pin (GPO) that will
serve as this device’s chip select (CS). See Figure 15-37. Any chip select pins reserved for structured text
will not be visible in the drop-down menu.

Select the Everspin MR2xHxx part number using the Part Number drop-down menu. Once selected, the
Size will update automatically and a default number of retentive bytes will be added. Adjust the number of
Retentive bytes to the desired amount using the Num Retentive Bytes box. The Num User Bytes will ad-
just automatically from the Num Retentive bytes entered.

 All memory on the device not configured as retentive will be configured as Num User Bytes.

 All Retentive memory is used to store retentive variables automatically on power loss (provided
 enough power is provided to complete the write cycle after a power loss is detected (hardware). All
 Num User bytes are accessed in the ladder using the EEPROM_READ and EEPROM_WRITE
 function blocks.

When the Everspin MR2xHxx is configured, click ok to close the Everspin MR2xHxx Properties dialog. It is
now listed in SPI section of the Devices window.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The Everspin MR2xHxx device is now installed and ready to be used in the
ladder diagram.

 Only one Everspin MR2xHxx can be installed in a ladder diagram project. EZ LADDER does not
 support multiple Everspin MR2xHxx devices simultaneously.

Using the Everspin MR2xHxx in the Ladder Diagram Project

The Everspin MR2xHxx memory is accessed as retentive memory or as general memory storage using the
EEPROM_READ and EEPROM_WRITE commands (same as EEPROM).

For retentive memory and using the EEPROM_READ and EEPROM_WRITE, see Chapter 7 - Retentive
Variables & EEPROM Memory and Chapter 5 - Creating Ladder Diagrams Projects.

MAX22007 Digital to Analog Converter (DAC) IC

The MAX22007 is a 4 channel, digital to analog output (DAC) integrated circuit (device) with an SPI inter-
face. EZ LADDER Toolkit has built-in software support for using this device on an SPI port. The MAX22007
can be configured to be either 0-10VDC (0 to 12.5VDC) or 0-20mADC (0-25mADC) via software (MAX22007
Device Project Settings). The MAX22007 is a TQFN-CU 56 pin device.

At the time the MAX22007 was added to EZ LADDER, it had two part numbers:

 MAX22007ETN+
 MAX22007ETN+T

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 215

Refer to the MAX22007 circuit’s datasheet for more details on interface circuitry and other requirements.

 The MAX22007 is a hardware device and requires additional circuitry and knowledge to
 interface it an EZ LADDER supported target. This chapter discusses the basics of using the
 MAX22007 in the ladder diagram and minor references to hardware when needed.

 The MAX22007 SPI support is based on actual hardware targets. Refer to the target’s User
 Manual or Chapter 23 - Hardware Targets to determine if SPI devices are supported.

Installing the MAX22007 in the Ladder Diagram Project

To be able to use the MAX22007 in an EZ LADDER Toolkit ladder diagram project, the MAX22007 must first
be installed and configured. As the PLC on a ChipTM is the most commonly used target for the MAX22007, it
will be used as an example to install and configure the MAX22007.

The MAX22007 is configured using the Project Settings. Using the Project Menu, choose Settings. The
Project Settings window will open as previously covered in Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If the MAX22007 device were installed, it
would be listed in the Devices pane under the Bus\SPI section. Click the add device button. The Target’s
Devices window will open. All the available devices and features for the target are shown in the Devices
section. Scroll down and find the MAX22007. Figure 15-38 shows the Target’s Devices window.

 The SPI port must be installed individually or no SPI ports will show available in later drop down
 configuration menus. For full functionality, the MAX22007 datasheet implementation of hardware
 must be followed.

Click ok. The MAX22007 Properties dialog will open. See Figure 15-39.

Figure 15-38

Chapter 15 SPI Devices and Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 216

Figure 15-39

Click add. The MAX22007PropertiesForm dialog will open. This box is used to select the SPI port, the CS
(chip select), enable the channels and select their operating mode (current or voltage).

The variable names are automatically created when the channel is enabled, but can be changed in the field
boxes. See Figure 14-40.

 Enable the Channels by using the check boxes.
 Select either Voltage or Current by using the Radio butons.
 The variable names can be changed if desired.

Once the settings are complete, click ok. On the MAX22007 Properties dialog, click ok (provided you aren’t
adding additional MAX22007’s). Click ok to close the PLCHIP-PXX Target Properties window and Project
Settings.

The DAC (Analog outputs) are now accessible in the ladder diagram using the variable names above. Based
on current or voltage, each channel will operate over it’s range based on the variable value of 0-4095.

 The DAC varlables will accept numbers greater than 4095, so the ladder diagram should provide
 sufficient range and limits. Larger numbers will cause the analog output to ‘wrap’ and begin from 0.

 The Status variable configured in the ladder diagram provides a status of the DAC output channels
 on the MAX22007. Refer to the MAX22007 datasheet.

Figure 15-40

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 217

CHAPTER 16
I2C Devices

This chapter provides basic information to understand how to install, configure and use the
I2C Devices in the EZ LADDER Toolkit.

Chapter Contents
I2C Overview ...218

Installing an I2C Bus in EZ LADDER ...218
FM24XXX RAMTRON FRAM Storage Devices219

I2C Custom Device Communications ...220

Chapter 16 I2C Devices

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 218

I2C Overview
EZ LADDER Toolkit supports the use of I2C Devices. These devices expand the capability of the P-Series
PLC on a ChipTM. Not all P-Series PLC on a Chip targets will support these devices. Refer to Chapter 23
- Hardware Targets for complete target information including supported devices and commands. Natively
supported I2C devices are available to install from the Project Settings Menu. Other devices can be used
with a P-Series PLC on a Chip I2C bus using structured text commands, see I2C Custom Device Communi-
cations later in this chapter.

 For supported I2C devices, they must be connected to the P-Series PLC on a ChipTM correctly, using
 standard pull-up resistors (typically 1.5K Ohms). In addition, the device must be installed in
 EZ LADDER Toolkit.

The following I2C devices are currently supported in EZ LADDER Toolkit and P-Series targets:

 FM24XXX Ramtron 24xxx Series FRAM

Installing an I2C Bus in EZ LADDER
 I2C bus availability is based on actual hardware targets. Refer to the target’s User Manual or
 Chapter 23 - Hardware Targets to determine if I2C is supported. I2C devices must be
 connected to the P-Series PLC on a ChipTM per design guidelines for proper operation using pull-up
 resistors.

Using the Project Menu, choose Settings. The Project Settings window will open as previously covered in
Chapter 4 - Configuring Targets.

Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target. If any I2C bus is installed, it will be listed
in the Devices pane under the Bus\I2C section. Click the add device button. The Target’s Devices window
will open. All the available devices and features for the target are shown in the Devices section. Scroll down
and find the I2C buses (I2C0, I2C1, etc). Figure 16-1 shows the Target’s Devices window.

Figure 16-1

Chapter 16 I2C Devices

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 219

Select I2Cx and click ok. The I2Cx bus will be installed. The Target’s Devices window will close and the I2C
bus is now listed in the Target Properties window in the Devices pane.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The I2C bus is now installed and ready to be used and additional I2C de-
vices may be installed and used in the ladder diagram.

FM24XXX RAMTRON FRAM Storage Devices

F24XXX FRAM devices are memory storage devices based on FRAM technology. These FRAM devices are
the memory used for retentive memory and/or used as non-volatile (EEPROM) storage on P-Series targets.
As multiple sizes are available, the xxx in the part number represents the model / size.

To install an FM24XXX FRAM device, use the Project Menu, choose Settings. The Project Settings win-
dow will open as previously covered in Chapter 4 - Configuring Targets.

 An I2C bus must be installed for the FM24XXX to install and function. If an I2C bus is not installed,
 see Installing an I2C bus in EZ LADDER earlier in this chapter.

Select the target and click the properties button. The Target Properties window will open. Click the add de-
vice button. The Target’s Devices window will open. All the available devices and features for the target are
shown in the Devices section. Scroll down and find the FM24XXX. Figure 16-2 shows the Target’s Devices
window.

Select FM24XXX and click ok. The Ramtron FM24XXX Properties Window will open. See Figure 16-3.

Figure 16-2

Chapter 16 I2C Devices

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 220

Using the I2C Port Drop down select box, select the I2C port that will interface to the Ramtron device. This
bus should have been installed prior to this step.

Select the Ramtron Device part number from the Part Number Drop down select box.

The Device Select (0) should not be edited unless multiple devices are installed on the same bus. Consult
the factory for configuring and using multiple I2C devices on one I2C port for P-Series Targets.

The Num Retentive Bytes may be adjusted to reflect the amount of retentive memory required. See Chap-
ter 7 - Retentive Variables and Chapter 4 - Configuring Targets for more details.

Click ok to install the FM24XXX device and close the Target’s Devices window. The FM24XXX is now in-
stalled and should appear in the Target Properties window in the Devices pane under Bus/I2C/I2Cx/.

Click ok to close the Target Properties window and click ok to close the Project Settings window. Be sure to
save the ladder diagram project. The FM24XXX device is now installed and ready to be used.

I2C Custom Device Communications
EZ LADDER Toolkit supports the use of I2C Devices that are not natively supported in the hardware target.
These devices expand the capability of the P-Series PLC on a ChipTM. Refer to Chapter 23 - Hardware Tar-
gets for complete target information including natively supported devices.

 For supported I2C devices, they must be connected to the P-Series PLC on a ChipTM correctly, using
 standard pull-up resistors (typically 1.5K Ohms). In addition, the device is only accessible using
 structured text functions.

Two structured text functions (EZ_I2CReadData and EZ_I2CWriteData) are provided to give receive and
transmit data from and to I2C devices that are not natively supported in the hardware target.

Figure 16-3

Chapter 16 I2C Devices

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 221

 Using structured text functions for I2C Custom Device Communications requires knowledge of I2C bus
 architecture and an understanding of implementing I2C communications to devices with different configuration
 parameters. Each I2C device had individual requirements for communications.

 This section and the structured text function details in Appendix B are provided as a resource of what is
 available in P-Series PLC on a Chip based targets and EZ LADDER Toolkit. It is not intended as a manual or
 guide for programming and writing code for I2C communications.

Appendix B - Target Specific ST Function Reference provides details and syntax on using the structured
text I2C functions.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 222

CHAPTER 17
Analog I/O

This chapter provides basic information on installing and using analog inputs and outputs.
This chapter covers standard product and P-13 Series PLC on a ChipTM targets.

Chapter Contents
Analog Inputs ...223

Analog Input Installation / Configuration ..223
Installing Analog Inputs for PLC on a ChipTM Targets224
Using Analog Inputs in the Ladder Diagram Project225
Averaging Analog Input Readings ...226
Scaling Analog Input Readings..226

Analog Outputs ..228
Installing Analog Inputs for PLC on a ChipTM Targets229
Using Analog Outputs in the Ladder Diagram Project230

Chapter 17 Analog I/O

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 223

Analog Inputs
As analog inputs are a common requirement in today’s control world, EZ LADDER Toolkit provides an easy
to use interface to read analog inputs and then using the built-in function blocks, act on the analog input
values.

Analog inputs provide a digital representation of an analog input signal. Analog inputs values are ranged as
integers based on the resolution of the analog input. The on-board analog inputs of the P-Series PLC on a
ChipTM are 12 bit resolution and the integer values that represent the signal ranges from 0 to 4095.

As the ladder diagram scans, it reads the analog signal level and digitizes it and converts it into an integer
that represents it. For example, if the analog input signal can range from 0-5VDC, then the integer repre-
sentation at 0V would be approximately 0 and at 5V would be approximately 4095. This integer number can
then be scaled in the ladder diagram into engineering units.

 The integer representation of the analog input is typically zero at the lower end (0V, 0mA, etc.) and
 4095 at the high end of the scale (5VDC, 20mA). The highest allowed for the analog input resolution
 is hardware dependent (10 bit = 1023, 12 bit = 4095, 15 bit - 32767). SPI analog input devices may
 support different resolutions than the on-board 12 bit.

There are two ways to achieve analog input functionality in the EZ LADDER Toolkit hardware target.

One way is to add supported SPI bus analog input devices (integrated circuits). This requires additional
hardware circuitry and interfacing. See Chapter 15 - SPI Devices and Support for a list of the supported
devices, how to install and use them.

The seconds is using the on-board analog inputs (if supported).

 All analog input support whether on-board or SPI device based are subject to the actual hardware
 target. Refer to the target’s User Manual or Chapter 23 - Hardware Targets to determine if analog
 inputs are supported.

Analog Input Installation / Configuration

Some hardware targets require analog inputs to be installed and prior to being available in the EZ LADDER
Toolkit ladder diagram project while others automatically configure the analog inputs in the EZ LADDER
Toolkit when the target is selected.

 Generally, off-the-shelf controllers that have analog inputs will automatically install in the EZ
 LADDER Toolkit and their variables are created automatically for the analog inputs.

 P-Series PLC on a ChipTM targets (and others) typically require the analog inputs be installed in the
 Project Settings before they can be used in an ladder diagram project.

Chapter 17 Analog I/O

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 224

Installing Analog Inputs for PLC on a ChipTM Targets

Select the target (PLCHIP-PXX) and click the properties button. The Target Properties window will open.
From the drop-down menu (DCPN), select the model / part number of the target. If any Analog Inputs are
installed, they will be listed in the Devices pane under the Internal/Analog I/O section. Click the add device
button. The Target’s Devices window will open. All the available devices and features for the target are
shown in the Devices section. Scroll down and find the Analog I/O. Figure 17-1 shows the Target’s Devices
window.

Select Analog I/O and click ok. The Internal Analog I/O Properties Window will open. See Figure 17-2. Click
the add inputs button to add analog inputs. A new Add Analog Inputs dialog will open. Select the analog input
channels that are required (AI0 through AI7) (holding the CTRL key will allow multiple selections) and click
ok. The Add Analog Inputs dialog closes automatically and the analog inputs should now appear under the
Input section of the Internal Analog I/O Properties window.

Click ok to close the Internal Analog I/O Properites window. The Analog I/O should now be listed in the De-
vices pane, under Internal. Click ok to close the Target Properties window.

Click ok to close the Project Settings window. Be sure to save the ladder diagram project. The analog inputs
are now installed and ready to be used.

 EZ LADDER Toolkit automatically creates variables that represent the analog inputs. They are
 labeled AI0 through AI7 for analog input 1 through analog input 8 respectively.

 The P-Series PLC on a Chip Target supports one (1) on-board analog output and it also uses pin
 12 (AI3). Therefore functionality on pin 12 may be configured as and analog input (AI3) or an
 analog output (AO0) but not both. Care should be taken when mapping analog I/O as to fit this into
 the requirements.

Figure 17-1

Chapter 17 Analog I/O

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 225

 Removing Analog Inputs is accomplished in the same manner as adding inputs except the analog
 input(s) to remove is selected and the remove inputs button is used in the Internal Analog I/O
 Properties window.

Using Analog Inputs in the Ladder Diagram Project

With the hardware target selected (and analog inputs installed if required), it is now simple to use these ana-
log input readings in the ladder diagram project.

 For each analog input, an integer variable exists that will be equal to the digital representation of the
 real world analog input signal. Typically, this number ranges from 0-4095 with zero representing the
 low end (0VDC, 0mADC, etc) and 4095 representing the upper end of the range (5VDC, 20mADC,
 etc.).

As these variables represent the analog inputs, they can be tied directly to function blocks that have integer
inputs and if necessary these variables may be converted to REAL variables using the REAL function block.
Figure 17-3 shows a ladder diagram using the analog input variable AI0 as an input to a function block.

Figure 17-2

Figure 17-3

Chapter 17 Analog I/O

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 226

Averaging Analog Input Readings

 As analog signals are susceptible to many environmental factors such as noise, etc, when connected
 to analog inputs, the analog input variables values will change frequently. Typically, analog inputs
 will toggle normally +/- one bit of resolution. To minimize the effect of this bit toggle and
 environmental conditions, it is recommended to average each analog input.

It is recommended to use the MAVG function block (Moving Average). When placing this block, you must
enter the number of samples to be averaged.

 The larger the number of samples, the more RAM is used and the slower the reaction time of the
 block output to input changes. Size the number of samples to give the best suited reaction time and
 to use the least amount of RAM needed accomplish to meet the operation specifications.

Figure 17-4 illustrates an analog input being averaged by the MAVG function block.

Scaling Analog Input Readings

It is often desirable to scale analog input reading to match the range of some control parameter such as
pressure, etc. An analog input reading can be converted to another scale by using some math and conver-
sion function blocks.

 For scaling to operate properly, the analog input sensor must be sized correctly or the scaled analog
 input will not truly represent the range of operation.

Simple Scaling

If the analog input and sensor are sized accordingly (analog input 0-5VDC and the sensor = 0-100 PSI),
then scaling is a simple matter. It is recommended that averaging be used prior to converting to any scale.
Figure 17-5 illustrates a simple scaling circuit taking the analog input, averaging it and then converting it as
above 0-100 PSI to represent 0-5VDC on the analog input.

It uses this formula:

 Scaled Reading = ((Analog Input Reading / Max Resolution) X Max Scale)

Figure 17-4

Chapter 17 Analog I/O

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 227

in this case:

 Scaled Reading = ((AI0 / 4095.0) X 100)

Advanced Scaling

If the analog input and sensor are designed with a range that does not start at zero as in the previous ex-
ample, The analog input reading is still scalable, but requires a more complex formula. See Figure 17-6. It
will take an analog input and scale it to 50 to 250 PSI.

It uses this formula:

Scaled Reading = (((Analog Input Reading / Max Resolution) X (Range Max - Range Min)) + Range Min)

in this case:

 Scaled Reading = (((AI0 / 4095.0) X (250 - 50)) + 50)

Figure 17-5

Chapter 17 Analog I/O

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 228

Analog Outputs
As analog outputs are a common requirement in today’s control world, EZ LADDER Toolkit provides an easy
to use interface to control analog outputs.

Analog outputs convert a digital value into an analog signal. Analog outputs values are ranged as integers
based on the resolution of the analog input. The on-board analog output of the P-Series PLC on a ChipTM is
10 bit resolution and the integer values that represent the signal ranges from 0 to 1023.

There are two ways to achieve analog output functionality in the EZ LADDER Toolkit hardware target.

One way is to add supported SPI bus analog output devices (integrated circuits). This requires additional
hardware circuitry and interfacing. See Chapter 15 - SPI Devices and Support for a list of the supported
devices, how to install and use them.

The seconds is using the on-board analog output(s) (if supported).

 All analog output support whether on-board or SPI device based are subject to the actual hardware
 target. Refer to the target’s User Manual or Chapter 23 - Hardware Targets to determine if analog
 outputs are supported.

Figure 17-6

Chapter 17 Analog I/O

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 229

 The P-Series PLC on a Chip Target supports one (1) on-board analog output and it also uses pin
 12 (AI3). Therefore functionality on pin 12 may be configured as and analog input (AI3) or an
 analog output (AO0) but not both. Care should be taken when mapping analog I/O as to fit this into
 the requirements.

Installing Analog Inputs for PLC on a ChipTM Targets

Select the target (PLCHIP-PXX) and click the properties button. The Target Properties window will open.
From the drop-down menu (DCPN), select the model / part number of the target. If any Analog Outputs are
installed, they will be listed in the Devices pane under the Internal/Analog I/O section. Click the add device
button. The Target’s Devices window will open. All the available devices and features for the target are
shown in the Devices section. Scroll down and find the Analog I/O. Figure 17-7 shows the Target’s Devices
window.

Select Analog I/O and click ok. The Internal Analog I/O Properties Window will open. See Figure 16-2. Click
the add outputs button to add analog outputs. A new Add Analog Outputs dialog will open. Select the analog
output channel(s) that are required (AOx) (holding the CTRL key will allow multiple selections if necessary)
and click ok. The Add Analog Outputs dialog closes automatically and the analog outputs should now ap-
pear under the Outputs section of the Internal Analog I/O Properties window.

Click ok to close the Internal Analog I/O Properites window. The Analog I/O should now be listed in the De-
vices pane, under Internal. Click ok to close the Target Properties window.

Click ok to close the Project Settings window. Be sure to save the ladder diagram project. The analog
output(s) are now installed and ready to be used.

 EZ LADDER Toolkit automatically creates variables that represent the analog outputs. They are
 labeled AOx for analog outputs.

Figure 17-7

Chapter 17 Analog I/O

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 230

Using Analog Outputs in the Ladder Diagram Project

With the hardware target selected (and analog outputs installed if required), it is now simple to use these
analog outputs in the ladder diagram project.

 For each analog output, an integer variable exists that will be the digital representation of
 the real world analog output signal. Typically, this number ranges from 0-1023 with zero representing
 the low end (0VDC, 0mADC, etc) and 1023 representing the upper end of the range (5VDC,
 20mADC, etc.). Actual values and ranges are dependent upon the resolution of the analog output; in
 this case, the on-board analog output is 10 bit or 0-1023.

As these variables represent the analog outputs, they can be tied directly to function blocks that have integer
outputs. As these function blocks change the variable values, the actual analog output’s voltage or current
will change accordingly.

Figure 17-8 shows a ladder diagram using the analog output variable AO0 as an output from a function
block.

Figure 17-8

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 231

CHAPTER 18
Counters & Timers

This chapter provides basic information on installing and using on-board EZ LADDER
based P-Series PLC on a ChipTM Timers and Counters.

Chapter Contents
Counter - Timer Capture Inputs ...232

Installing Counter - Capture Inputs ...232
Capture Inputs Configured as Timers ...234
Capture Inputs Configured as Counters ...234

Quadrature Counter Inputs ...235

Installing Quadrature Counter Inputs ..235

Using the Quadrature Counter Inputs ...237

Chapter 18 Timers & Counters

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 232

Counter - Timer Capture Inputs
The P-Series PLC on a ChipTM based products provide up to three hardware capture inputs that may be con-
figured and utilized as either timers or counter inputs. These inputs are based on actual hardware inputs and
internal frequencies, therefore, are more accurate than standard software timers and counters.

Additional EZ LADDER software Counter (CTU, CTD) and Timer (TON, TOF) functions exist. See Appendix
A - Function Reference.

 As this manual is a generic EZ LADDER Toolkit manual for P-Series PLC on a ChipTM target
 programming, the counter and timer capture inputs are covered. To determine if the actual hardware
 target (model) supports these inputs, refer to Chapter 23 - Hardware Targets.

All the counter - timer capture inputs are based off the PLC on a ChipTM CAPx.x pins. Depending upon the
hardware target, only some or even none of the inputs may be available.

Installing Counter - Capture Inputs
Prior to using the TIMERCOUNTER function block, the actual capture input(s) must be installed in EZ LAD-
DER Toolkit and configured for the operational mode desired. The examples shown are for the P-Series PLC
on a ChipTM. Other targets will operate and configure similarly.

Select the target (PLCHIP-PXX) and click the properties button. The Target Properties window will open.
From the drop-down menu (DCPN), select the model / part number of the target. If any of the Timer/Counter
capture inputs are installed, they will be listed in the Devices pane under the Internal/TimerCounter section.
Click the add device button. The Target’s Devices window will open. All the available devices and features
for the target are shown in the Devices section. Scroll down and find the TimerCounter. Figure 18-1 shows
the Target’s Devices window.

Figure 18-1

Chapter 18 Timers & Counters

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 233

Select TimerCounter and click ok. The Timer/Counter Properties Window will open. See Figure 18-2.

Click the add button to add capture inputs. A new Select Timer / Counter Channel dialog will open. Select
the capture input channels that are required (TmrCntr0 - TmrCntr2) (holding the CTRL key will allow multiple
selections) and click ok. See Figure 18-3.

The TmrCntrX (X=Channel) Properties for dialog will open. Using the drop down Mode menu, select the
mode of operation for the timer-counter capture input. The choices are Free-running Timer, Timer or Coun-
ter. When selecting the mode as a free-running timer, no additional configuration is required. When configur-
ing as either a timer or a counter, additional configuration is required by selecting the Timer Mode (or Coun-
ter Mode) and the Pin (capture pin). For the capture pin, refer to the target’s hardware manual. See Figure
18-4.

Click ok to close the TmrCntrX Properites window. Click ok to close the Timer / Counter Properites window.
The TimerCounter should now be listed in the Devices pane, under Internal. Click ok to close the Target
Properties window.

Click ok to close the Project Settings window. Be sure to save the ladder diagram project. The timer / coun-
ter capture input(s) are now installed and ready to be used.

Figure 18-2

Figure 18-3

Figure 18-4

Chapter 18 Timers & Counters

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 234

Capture Inputs Configured as Timers

Capture inputs may be configured as either standard timers or free-running timers and must be configured
using the Project...Settings Menu as shown earlier this chapter.

Free-Running Timer

When configured as a free-running timer, the timer channel (capture input) may not be used for any other
function and is based on a 1MHz reference clock. The TIMERCOUNTER function block is used to read the
current value from the timer (capture input). See Appendix A - Function Reference for details on specific
function blocks. When configured and the TIMERCOUNTER function block is enabled, the timer channel
(capture input) will time based on 1MHz or one count for each microsecond. The timer may be reset by utiliz-
ing the reset (R) input.

 When a timer capture channel reaches its maximum value, it will reset to zero and begin again. Care
 should be taken to not allow this to occur in the ladder diagram.

Standard Timer (Timer)

When configured as a standard timer, the timer channel (capture input) may not be used for any other func-
tion and is based on a 24MHz clock. When using the capture input(s) as standard timers, they may be used
and configured to measure either the input frequency or the period between input pulses.

The TIMERCOUNTER function block is used to read the current value from the timer (capture input). See
Appendix A - Function Reference for details on specific function blocks. When configured and the TIMER-
COUNTER function block is enabled, the timer channel (capture input) will provide either the actual input
frequency on the capture input or the period between pulses on the capture input.

The timer may be reset by utilizing the reset (R) input.

Capture Inputs Configured as Counters

Capture inputs may be configured as counters and must be configured using the Project...Settings Menu as
shown earlier this chapter.

Capture inputs configured as counters may be configured to count on rising edge, falling edge or both
edges. The Counter Mode (edge) is configured in the Project....Menu Settings. As timers, a input capture
pin must be selected. Refer to the actual hardware target’s datasheet or manual for identifying the proper
capture pin.

 When a counter capture channel reaches its maximum value, it will reset to zero and begin again.
 Care should be taken to not allow this to occur in the ladder diagram.

Chapter 18 Timers & Counters

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 235

Quadrature Counter Inputs
In addition to timer-counter capture inputs, P-Series targets may support quadrature counter inputs. These
inputs are ideal for connecting encoders for motion control.

 As this manual is a generic EZ LADDER Toolkit manual for P-Series PLC on a ChipTM target
 programming, the Quadrature Counter inputs are covered. To determine if the actual hardware
 target (model) supports these inputs, refer to Chapter 23 - Hardware Targets.

The quadrature counter consists of three inputs QEI_PHA (Phase A), QEI_PHB (Phase B) and QEI_IDX
(Index). Pulses on these inputs cause internal hardware counters to count up, down or reset.

The internal hardware counters consist of the Position counter which holds the actual count of the input de-
vice connected to the A and B inputs and the Index Counter which hold the number of times the counter has
passed the maximum allowed position (wrapped back to zero).

Installing Quadrature Counter Inputs
Prior to using the quadrature counter function block(s), the actual quadrature input(s) must be installed in EZ
LADDER Toolkit and configured for the operational mode desired. The examples shown are for the P-Series
PLC on a ChipTM. Other targets will operate and configure similarly.

Select the target (PLCHIP-PXX) and click the properties button. The Target Properties window will open.
From the drop-down menu (DCPN), select the model / part number of the target. If any of the Quadrature
Counter inputs are installed, they will be listed in the Devices pane under the Internal/PLCHIP_Pxx_qei
section. Click the add device button. The Target’s Devices window will open. All the available devices and
features for the target are shown in the Devices section. Scroll down and find the PLCHIP_Pxx_qei. Figure
18-5 shows the Target’s Devices window.

Figure 18-5

Chapter 18 Timers & Counters

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 236

Select PLCHIP_Pxx_qei and click ok. The PLCHIP_Pxx_qei Properties Window will open. See Figure 18-6.

This PLCHIP_Pxx_qei properties window is used to configure specific parameters for the quadrature counter
inputs.

Quadrature Mode

The quadrature mode sets how the quadrature counter inputs will operate.

 Non-quadrature Counter increments for each pulse on B (QEI_PHB) input. A (QEI_PHA) input
 sets the direction of count.

 X2 X2 quadrature mode. Only two edges are counted per quadrature pulses on
 inputs A and B.

 X4 X4 quadrature mode. All edges are counted per quadrature pulses on inputs
 A and B.

Flags

Optional flags may be configured for added versatility. These flags alter the way inputs are handled.

 Invert Direction Inverts the count direction.

 Invert Index Inverts the active state of the index input (QEI_IDX).

 Index Resets A pulse on the Index input (QEI_IDX) will cause the Position Counter to reset.
 Counter Position

Figure 18-6

Chapter 18 Timers & Counters

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 237

Index Gating

Index Gating flags may be configured for added versatility. These flags alter the way the index pulses are
handled base on conditions of the A and B inputs (Phase A, QEI_PHA and Phase B, QEI_PHB).

 Care must be taken when altering the Index Gating flags as changes may cause undesired
 results.

Additional Settings

 Maximum Position This is the maximum position for the encoder (counter) position. In the forward
 direction, when the position counter exceeds this value, the index counter is
 incremented and the position counter is set to zero. In a reverse direction,
 when the position counter his zero, the index counters is decremented and the
 Position counter is set to the this value (maximum position).

 PHA Digital Filter Sampling counter for digital input filter for Phase A Input. If set to zero, the filter
 is disabled. When not zero, the value is the number of sample clocks that the
 input signal must remain in a new state (high/low) for the new state to be seen]
 as a valid state. The sample clock is 120MHz (8.33333ns).

 PHB Digital Filter Sampling counter for digital input filter for Phase B Input. If set to zero, the filter
 is disabled. When not zero, the value is the number of sample clocks that the
 input signal must remain in a new state (high/low) for the new state to be seen]
 as a valid state. The sample clock is 120MHz (8.33333ns).

 INX Digital Filter Sampling counter for digital input filter for Index Input. If set to zero, the filter
 is disabled. When not zero, the value is the number of sample clocks that the
 input signal must remain in a new state (high/low) for the new state to be seen]
 as a valid state. The sample clock is 120MHz (8.33333ns).

Click ok to close the PLCHIP_Pxx_qei Properites window. The PLCHIP_Pxx_qei should now be listed in the
Devices pane, under Internal. Click ok to close the Target Properties window.

Click ok to close the Project Settings window. Be sure to save the ladder diagram project. The quadrature
counter inputs are now installed and ready to be used.

Using the Quadrature Counter Inputs
With the quadrature counter inputs installed, they may be used in a ladder diagram. Three function blocks
are provided that access the quadrature inputs: CNTR_PXX_QEI, CNTR_PXX_QEI_CMP and CNTR_PXX_
QEI_VEL.

Using combinations of these function blocks provide maximum versatility in the ladder diagram to handle a
multitude of applications.

Chapter 18 Timers & Counters

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 238

The CNTR_PXX_QEI function block is used to read the current count (position counter), direction of travel,
status and index count with optional reset control for the position counter and index counter.

The CNTR_PXX_QEI_CMP function block is used to set internal compare registers and then monitor the
compare status of these registers. The position counter and index counter each have three (3) internal
hardware compare registers that this function uses to compare values input to the function block as compare
values to the actual counts of the position counter and index counter.

The CNTR_PXX_QEI_VEL function block is used to calculate a velocity based on the quadrature counter
inputs.

See Appendix A - Function Reference for details on specific function blocks.

Divelbiss Corporation - EZ LADDER Toolkit User Manual 239

CHAPTER 19
Ethernet / Wi-Fi

This chapter provides basic information on installing and using Ethernet features.

Chapter Contents
Ethernet Overview ...240

Ethernet Physical Port (Layer) Support ..240

Installing Ethernet Support ..240
DHCP Configuration ..242
Static IP Configuration ..243

Wi-Fi Overview ...243

Installing Wi-Fi Support ..244
DHCP Configuration ..245
Static IP Configuration ..246

Ethernet / Wi-Fi as the Programming Port ..247

Ethernet / Wi-Fi Connectivity as Modbus Port ..248

Connecting to a Wi-Fi Network (Client Mode) ...250
To configure for a Wi-Fi network ..250

Configuring and Using Wi-Fi (Host Mode) ..252
To configure for Host Mode ...252

Structured Text Wi-Fi / Ethernet Control ...254

Chapter 19 - Ethernet & Wi-Fi

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 240

Ethernet Overview
P-Series PLC on a ChipTM targets may support Ethernet connectivity. This Ethernet port may be used in four
ways: as the programming port using EZ LADDER Toolkit, as a communication port (using Modbus TCP), a
webserver and as a VersaCloud M2M+IoT communications port to the VersaCloud M2M+IoT portals.

 As this manual is a generic EZ LADDER Toolkit manual for P-Series PLC on a ChipTM target
 programming, Ethernet connectivity is covered. To determine if the actual hardware
 target (model) supports ethernet, refer to Chapter 23 - Hardware Targets.

Ethernet Physical Port (Layer) Support
P-Series PLC on a ChipTM targets natively support 3 different physical (PHY) integerated circuits. These
circuits supports 1, 3 and 5 Ethernet ports.

 2 Port provides one port to the PLC on a Chip and 1 External Port
 Uses: Texas Instrument DP83848IVV/NOPB 10/100

 3 Port provides one port to the PLC on a Chip and 2 External Ports
 Uses: Microchip KSZ8873RLLI 10/100

 5 Port provides one port to the PLC on a Chip and 4 External Ports
 Uses: MIcrochip KSZ8775CLXIC 10/100

 When installing the Ethernet option in the Target Settings, EZ LADDER and the P-Series PLC on a
 Chip automatically identify which physical integrated circuit is connected. No additional configuration
 is needed, provided the physical integrated circuit has been configured, properly applied and
 connected per the design guidelines.

Installing Ethernet Support
By default, Ethernet ports are not enabled or configured on P-Series hardware targets. The Ethernet port
must be installed and configured using the Project....Bootloader Menu.

The first step is to open an existing program or create a new program (a simple one-rung program). This
program is required to switch EZ LADDER Toolkit from the EDIT mode to the RUN mode; which is required
for using the Bootloader Menu option. Make sure the serial port is configured correctly in the Project...Set-
tings menu. Refer to Chapter 4 - Configuring Targets and Chapter 5 - Creating Ladder Diagram Proj-
ects.

 The Bootloader Menu option is only available when EZ LADDER Toolkit is in the RUN mode and
 connected to the actual target.

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 241

Open or create the ladder diagram project and configure the serial port using the Project...Settings menu.
Click the monitor (MON) button located on the toolbar. EZ LADDER will switch from the EDIT mode to the
RUN mode. The toolbars will change appropriately.

In the RUN mode, select the Project menu and the select Bootloader. EZ LADDER will now attempt to con-
nect to the hardware target and initialize it’s bootloader. During this time, you may see a small status window
. If the Bootloader does not respond or an error is encountered, check the serial port settings and cables.

 The bootloader is a factory installed utility program on all PLC on a ChipTM hardware targets. This
 utility is used for configuring options on the target and to update or install target software kernels.

When the Bootloader utility responds, the Bootloader screen will automatically appear. See Figure 19-1.

Click the target options button. A new Target Options window will open. This window had two tabs: Ether-
net Options and SD Card Options. See Figure 19-2.

If not selected, select the Ethernet Options Tab. Click the Ethernet Enabled check-box to enable Ethernet.

The Ethernet configuration defaults to DHCP Enabled and IP v4 Auto Config enabled (the target gets it’s IP
address from the network’s DHCP server. Static IP Addressing may also be configured.

Figure 19-1

Figure 19-2

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 242

 To be able to connect to the Bootloader via Ethernet in the future (this screen without using serial
 ports), check the Enable Ethernet in Bootloader check box.

 To be able to use the Ethernet port as the EZ LADDER programming port, check the Enable EZ
 Ladder Ethernet Communications check box.

The Enable WiFi check box is used for models with Wi-Fi capability. Refer to the Wi-Fi section of this chap-
ter for more information. This box should only be used for Wi-Fi models only.

 P-Series PLC on a Chip based targets can support an actual Ethernet Port or Wi-Fi Connectivity
 individually. Both are not supported simultaneously. Internally, the PLC on a Chip itself considers the
 Wi-Fi connectivity as an Ethernet Port.

DHCP Configuration

 When configuring for receiving the IP address from the network, a Host name is recommended to
 identify the hardware target on the Ethernet network. See Figure 19-3. Enter a Host name in the Host
 Name box.

 DHCP IP addressing is assigned by the network’s DHCP server and therefore can be any address
 and is controlled (can change at will) by the DHCP server.

Click ok to accept the DHCP settings and close the window. Click restart target to exit the Bootloader
and force the software kernel to restart, accepting the changes. The Ethernet port is now configured to oper-
ate as the hardware target’s programming port with the network’s DHCP.

 The MAC: field is factory set and should not be changed.

 When configured for DHCP and no DHCP server is found (time-out), the port will revert to a default
 Auto-IP address

Figure 19-3

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 243

Static IP Configuration

To configure Ethernet for a static IP mode, de-select the DHCP Enabled and IP v4 Auto Config check-boxes.
Additional configuration items are required. See Figure 19-4.

 When using the static IP mode, a Host Name is recommended to identify the hardware target
 on the Ethernet network.

The IP Address (IP Addr), Subnet (Subnet) and Gateway (Gateway) information must be entered into the ap-
propriate boxes. Enter the information.

 Generally, the Subnet (mask) is 255.255.255.0; however, this setting as with the IP Address and
 Gateway is network specific. This information may be obtained from you network administrator.

Click ok to accept the static IP settings and close the window. Click restart target to exit the Bootloader
and force the software kernel to restart, accepting the changes. The Ethernet port is now configured to oper-
ate as the hardware target’s programming port with a static IP address.

 The MAC: field is factory set and should not be changed.

Wi-Fi Overview
P-Series PLC on a ChipTM targets may support Wi-Fi connectivity. This Wi-Fi connectivity may be used in
three ways: as the programming port using EZ LADDER Toolkit , as a communication port (using Modbus
TCP), a webserver and as a VersaCloud M2M+IoT communications port to VersaCloud M2M+IoT portals.

 As this manual is a generic EZ LADDER Toolkit manual for P-Series PLC on a ChipTM target
 programming, Wi-Fi connectivity is covered. To determine if the actual hardware
 target (model) supports Wi-Fi, refer to Chapter 23 - Hardware Targets.

Figure 19-4

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 244

 Wi-Fi may be configured to operate in Client or Host Mode. Client mode is the default mode where
 the Wi-Fi connects to a Wi-Fi network or router. The Host Mode configures the Wi-Fi to accept
 connections from other Wi-Fi enabled devices like phones or tablets. This is typically used with the
 Webserver feature.

Installing Wi-Fi Support
By default, Wi-Fi connectivity is not enabled or configured on P-Series hardware targets. For all P-Series
based PLC on a Chip targets, the PLC on a Chip itself treats the Wi-Fi connectivity as an Ethernet port.
To use Wi-Fi, the Ethernet port and Wi-Fi options must be installed and configured using the Project....Boot-
loader Menu.

The first step is to open an existing program or create a new program (a simple one-rung program). This
program is required to switch EZ LADDER Toolkit from the EDIT mode to the RUN mode; which is required
for using the Bootloader Menu option. Make sure the serial port is configured correctly in the Project...Set-
tings menu. Refer to Chapter 4 - Configuring Targets and Chapter 5 - Creating Ladder Diagram Proj-
ects.

 The Bootloader Menu option is only available when EZ LADDER Toolkit is in the RUN mode and
 connected to the actual target.

Open or create the ladder diagram project and configure the serial port using the Project...Settings menu.
Click the monitor (MON) button located on the toolbar. EZ LADDER will switch from the EDIT mode to the
RUN mode. The toolbars will change appropriately.

In the RUN mode, select the Project menu and the select Bootloader. EZ LADDER will now attempt to con-
nect to the hardware target and initialize it’s bootloader. During this time, you may see a small status window
. If the Bootloader does not respond or an error is encountered, check the serial port settings and cables.

 The bootloader is a factory installed utility program on all PLC on a ChipTM hardware targets. This
 utility is used for configuring options on the target and to update or install target software kernels.

When the Bootloader utility responds, the Bootloader screen will automatically appear. See Figure 19-5.

Figure 19-5

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 245

Click the target options button. A new Target Options window will open. This window had two tabs: Ether-
net Options and SD Card Options. See Figure 19-6.

If not selected, select the Ethernet Options Tab. Click the Ethernet Enabled check-box to enable Ethernet.

The Ethernet configuration defaults to DHCP Enabled and IP v4 Auto Config enabled (the target gets it’s IP
address from the network’s DHCP server. Static IP Addressing may also be configured.

 To be able to connect to the Bootloader via Ethernet (Wi-Fi) in the future (this screen without using
 serial ports), check the Enable Ethernet in Bootloader check box.

 To be able to use the Ethernet port (Wi-Fi) as the EZ LADDER programming port, check the Enable
 EZ Ladder Ethernet Communications check box.

 Check the Enable WiFi checkbox. This enables the Wi-Fi and configures it to be treated as an
 Ethernet port from the PLC on a Chip and EZ LADDER Toolkit.

 P-Series PLC on a Chip based targets can support an actual Ethernet Port or Wi-Fi Connectivity
 individually. Both are not supported simultaneously. Generally, the PLC on a Chip itself treats the
 Wi-Fi connectivity as a Ethernet Port.

DHCP Configuration

 When configuring for receiving the IP address from the network, a Host name is recommended to
 identify the hardware target on the Wi-Fi network. See Figure 19-7. Enter a Host name in the Host
 Name box.

 DHCP IP addressing is assigned by the network’s DHCP server and therefore can be any address
 and is controlled (can change at will) by the DHCP server.

Figure 19-6

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 246

Click ok to accept the DHCP settings and close the window. Click restart target to exit the Bootloader and
force the software kernel to restart, accepting the changes. The Ethernet port and Wi-Fi connectivity is now
configured to operate as the hardware target’s programming port with the network’s DHCP.

 The MAC: field is factory set and should not be changed.

 When configured for DHCP and no DHCP server is found (time-out), the port will revert to a default
 Auto-IP address if the IP v4 Auto Config checkbox is enabled. This setting can be altered at run-time
 using structured text.

Static IP Configuration

To configure the Wi-Fi for a static IP mode, de-select the DHCP Enabled and IP v4 Auto Config check-boxes.
Additional configuration items are required. See Figure 19-8.

 When using the static IP mode, a Host Name is recommended to identify the hardware target
 on the Ethernet network.

The IP Address (IP Addr), Subnet (Subnet) and Gateway (Gateway) information must be entered into the ap-
propriate boxes. Enter the information.

 Generally, the Subnet (mask) is 255.255.255.0; however, this setting as with the IP Address and
 Gateway is network specific. This information may be obtained from you network administrator.

Click ok to accept the static IP settings and close the window. Click restart target to exit the Bootloader
and force the software kernel to restart, accepting the changes. The Ethernet port / Wi-Fi connectivity is now
configured to operate as the hardware target’s programming port with a static IP address.

 The MAC: field is factory set and should not be changed.

Figure 19-7

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 247

Ethernet / Wi-Fi as the Programming Port
By completing the configuration of the Bootloader Ethernet / Wi-Fi settings (DHCP or Static), the Ethernet
port or Wi-Fi connectivity (model dependent) is configured to be used as the hardware target’s Programming
Port for configuration and downloading ladder diagram programs.

 For Modbus functionality, additional configuration items are required.

 Before a target’s Wi-Fi connectivity may be used as the programming port, the Ethernet and Wi-Fi
 must be enabled in the Bootloader and the Wi-Fi must be configured to connect to a network with
 all the setup and credentials required to do so. See / follow the steps in Connecting to a Wi-Fi
 Network later in this chapter.

To use the Ethernet port as the programming port, in the ladder diagram’s Project Settings, select Eth:XXXX
from the Communications Settings drop-down box to configure the Ethernet as the port to use. See Figure
19-9. The Eth:XXXX is the selected is for the Ethernet / Wi-Fi IP address of the unit to connect to and pro-
gram. This IP address was set in the Bootloader or is DHCP.

Figure 19-8

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 248

When connecting to the target (in RUN mode), a dialog box (Browse Ethernet Devices) will appear listing all
the hardware targets found on the Ethernet / Wi-Fi network. Select the target to use and click ok. See Figure
19-10.

Ethernet / Wi-Fi Connectivity as Modbus Port
The Ethernet port / Wi-Fi connectivity may also be used as a Modbus communications port (Modbus Master
or Slave - Modbus TCP). When using the Ethernet port as a Modbus communications port, additional con-
figuration is required.

 As this manual is a generic EZ LADDER Toolkit manual for P-Series PLC on a ChipTM target
 programming, Ethernet / Wi-Fi connectivity is covered. To determine if the actual hardware
 target (model) supports Ethernet or Wi-Fi connectivity, refer to Chapter 23 - Hardware Targets

Figure 19-10

Figure 19-9

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 249

Prior to using the Ethernet port or Wi-Fi connectivity for Modbus communications, the Ethernet port must be
installed in the EZ LADDER project (this is different than previously installed using the Bootloader). This is
required for Wi-Fi as the PLC on a Chip treats Wi-Fi as an Ethernet port. It is installed using the Projects....
Settings Menu.

 Before a target’s Wi-Fi connectivity may be used as Modbus TCP port, the Ethernet and Wi-Fi
 must be enabled in the Bootloader and the Wi-Fi must be configured to connect to a network with
 all the setup and credentials required to do so. See / follow the steps in Connecting to a Wi-Fi
 Network later in this chapter.

Select the target (PLCHIP-PXX) and click the properties button. The Target Properties window will open.
From the drop-down menu (DCPN), select the model / part number of the target. If Ethernet Port is installed,
they will be listed in the Devices pane under the Internal/Ethernet section. Click the add device button. The
Target’s Devices window will open. All the available devices and features for the target are shown in the
Devices section. Scroll down and find Ethernet. Figure 19-11 shows the Target’s Devices window.

Select Ethernet and click ok. The Target Properties window. Ethernet should now be listed in the Devices
pane, under Internal. Click ok to close the Target Properties window.

Click ok to close the Project Settings window. Be sure to save the ladder diagram project. The Ethernet port
/ Wi-Fi connectivity is now installed and ready to be used for Modbus communication.

 The Ethernet / Wi-Fi is now installed, but will require additional configuration prior to using Modbus.
 Refer to Chapter 13 - Modbus Networking for details on Modbus communication, Modbus
 function blocks and selecting/configuring Ethernet / Wi-Fi for use with Modbus.

Figure 19-11

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 250

Connecting to a Wi-Fi Network (Client Mode)
With Wi-Fi configured in the Bootloader (for targets that support Wi-Fi connectivity), additional steps must be
taken to connect the target to a Wi-Fi network (the most common configuration). These steps include select-
ing the Wi-Fi (wireless) network, entering an SSID and an access password.

 Before Wi-Fi connectivity may be used as the programming port for the first time, the Wi-Fi network
 must be selected and configured using EZ LADDER Toolkit with serial port connection to the target.
 This configuration includes selecting the network, entering the SSID and the Password.

To configure for a Wi-Fi network

 1. Open a program or create a simple program with the target info.

 2. Change EZ LADDER to the Monitor mode by clicking the button.

 3. Make sure the target is connected to the computer and click the button to connect EZ
 LADDER Toolkit to the hardware target.

 4. From the menu at the top, select Project then select WiFi Setup. Refer to Figure 19-12.

 5. The WiFi Setup and Status window will open. An intermediate temporary dialog may be seen
 while the setup is accessed. Refer to Figure 19-13.

 6. The Mode must be set to Client. For host mode, see Configuring and Using Wi-Fi (Host Mode)
 later in this chapter.

 7. Referring to Figure 19-13, the Currently Visible Access Points (item A) pane shows all the
 networks currently in-range for the Wi-Fi to detect. The network must be in-range to be
 configured.

 8. In the Access Points Settings, enter the SSID and Passcode in their respective places (item B). It
 will be necessary to double-click to enter the values. Refer to Figure 19-13.

 9. Select the Security Type for the network (item B).

 10. With the information entered, click the save settings button (Item C) to save the current settings
 for the Wi-Fi network.

Figure 19-12

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 251

 Multiple Wi-Fi networks may be saved by adding them to list shown in Figure 19-13. Each
 setting is stored in the hardware target and is maintained during a power loss. The priority of
 Wi-Fi network to connect to is based on the priority number in the list.

 Up to 10 SSID / Passwords may be saved on the on-board Wi-Fi module. The module
 searches through the list for an in-range SSIDs (APs) and attempts to connect with it. When
 removing (deleting) SSIDs, the list should be edited as all remaining SSIDs are listed
 beginning with the top and leaving no empty spaces in the list. When operating, as the
 module searches the list in order, if an empty location is detected, the module will stop
 searching for an SSID match. There should be no empty locations except at the end of the
 list (if less than 10 entries).

 11. Click the soft reset button (Item D). This forces the Wi-Fi connectivity to reset. After the reset,
 the target should connect to the Wi-Fi network.

 12. Click the refresh status button (Item E). The information under the Current Connection should
 update and show the network currently connected to.

 13. Click close to close the WiFi Setup and Status window.

Figure 19-13

A
B

C

D

E

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 252

The Wi-Fi connectivity is now configured and connected to Wi-Fi network and can be used as the program-
ming port, for Modbus TCP or webserver. VersaCloudM2M+IoT communications requires additional configu-
ration in the project settings.

 Wi-Fi connectivity depends upon the target being in range, with sufficient signal strength and being
 configured properly for communications over the Wi-Fi network.

Configuring and Using Wi-Fi (Host Mode)
With Wi-Fi configured in the Bootloader (for targets that support Wi-Fi connectivity), the Wi-Fi may be con-
figured in Host mode. This mode allows configures the on-board Wi-Fi module to accept connections from
other smart devices (phones, tablets, computers). The on-board Wi-Fi module assigns the IP address to the
connected device(s). This is useful for stand-alone applications using a webserver with local connections for
data retrieval.

 Wi-Fi can only operate in either Client or Host mode. It cannot operate in both modes.

To configure for Host Mode

 1. Open a program or create a simple program with the target info.

 2. Change EZ LADDER to the Monitor mode by clicking the button.

 3. Make sure the target is connected to the computer and click the button to connect EZ
 LADDER Toolkit to the hardware target.

 4. From the menu at the top, select Project then select WiFi Setup. Refer to Figure 19-14.

 5. The WiFi Setup and Status window will open. An intermediate temporary dialog may be seen
 while the setup is accessed. Refer to Figure 19-15.

 6. Set the Mode to Host (Item A). For client mode, see Connecting to a Wi-Fi Network (Client Mode)
 earlier in this chapter.

 Ignore the Currently Visible Access Points pane, the CurrentConnection area (the settings
 shown do not apply and will disappear after configuation) and the other information.

Figure 19-14

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 253

 7. Click the save settings button (Item C) to save the current settings for the Wi-Fi module.

 8. Click the soft reset button (Item D). This forces the Wi-Fi module to reset. After the reset, the
 screen should update changed for Host mode with grayed out sections.

 7. Refer to Figure 19-16 for the rest of the configuration.

 8. In the Access Points Settings - use Priortity 0 (item B) slot and enter a name (or SSID) in the
 SSID field to use for the access point and enter a passcode in the Passcode field that all devices
 will use to connect. It will be necessary to double-click to enter the values.

 9. Select the Security Type desired for the access point (item B).

 10. Select a Channel number (item A) (if needed) to prevent any interference with other Wi-Fi access
 points nearby.

 11. With the information entered, click the save settings button (Item C) to save the current settings
 for the acess point.

 12. Click the soft reset button (Item D). This forces the Wi-Fi module to reset.

 13. Click close to close the WiFi Setup and Status window.

The Wi-Fi connectivity (Host Mode) is now configured and should be visible as an access point to Wi-Fi
enabled smart devices.

Figure 19-15

A

C

D

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 254

Figure 19-16

A

B

C

D

 This Wi-Fi (Host Mode) connectionis for connecting smart devices directly to a P-Series PLC on a
 Chip based controller to use direct communications features such as webserver. It does not provide
 any other connection or internet access and cannot be used as any internet hot-spot.

 The Wi-Fi mode and other configurations may also be programmed using Structured Text, hard-
 codeded into the application program. This chapter lists the Ethernet and Wi-Fi Structured Text
 commands. For more details on them and Strutured Text, refer to Appendix B - Structured Text
 Function Reference and Chapter 26 - Structured Text.

Structured Text Wi-Fi / Ethernet Control
Both Wi-Fi and Ethernet may be configured based on needs and often are controlled automatically for com-
munications from the ladder diagram program (such as Modbus, Programming Port, webserver or Versa-
Cloud M2M+IoT).

Several target specific structured text functions exist that allow for direct interaction to the Ethernet or Wi-Fi
hardware and connection. The functions are described in detail in Appendix B - Target Specific ST Func-
tion Reference. Structured text information is found in Chapter 26 - Structured Text.

Chapter 19 Ethernet / Wi-Fi

Divelbiss Corporation - EZ LADDER Toolkit User Manual 255

 Using structured text to access the information and control the Ethernet and Wi-Fi requires
 programming experience with structured text and an understanding of Ethernet and Wi-Fi.

 Care must be taken implementing control and interfacing to Wi-Fi and Ethernet using structured text.
 If not handled properly, Ethernet or Wi-Fi communications may become unstable or non-functioning
 entirely.

All structured text Wi-Fi commands are passed through to the on-board Wi-Fi module. The Wi-Fi module
then processes the command and forms a response (that is returned to the calling function). All the Wi-Fi
structured text commands will need to be polled until they have returned with a complete flag as some could
take several seconds (up to 20 seconds) to complete.

After a complete flag is received by the calling function, the response must be checked for errors. Refer to
Appendix B - Target Specific ST Function Reference for function response and error codes.

 The Wi-Fi module stores up to 10 SSID / password combinations and when the Wi-Fi module boots,
 it searches beginning with the top of the list and continues to the end of the list searching for a
 matching (AP) SSID. If an empty ‘slot’ is detected in the list, it will stop searching (all entries after an
 empty are ignored). For example, if slot #1 were empty, the module would never search slots 2-9.
 Care must be taken when deleting / adding SSIDs to the list to not have empty slots. See
 Connecting to a Wi-Fi Network section earlier in this chapter for adding / deleting SSIDs.

Some of the functions are:

EZ_Eth_DHCPRelease
EZ_Eth_DHCPRenew
EZ_Eth_GetHostname
EZ_Eth_GetIPV4Addr
EZ_Eth_GetLinkActive
EZ_Eth_SetEnableAutoIpV4
EZ_Eth_SetEnableDHCPIpV4
EZ_Eth_SetHostname
EZ_Eth_SetStaticIPV4Addr
EZ_WiFi_Get_Access_Points
EZ_WiFi_GetChannel

EZ_WiFi_Get_Connection_Status_1
EZ_WiFi_Get_Connection_Status_2
EZ_WiFi_Get_Mode
EZ_WiFi_Get_Passcode
EZ_WiFi_Get_Security
EZ_WiFi_Get_SSID
EZ_WiFi_Set_Channel
EZ_WiFi_Set_Passcode
EZ_WiFi_Set_Security
EZ_WiFi_Set_SSID
EZ_WiFi_Soft_Reset

Divelbiss Corporation - EZ LADDER Toolkit User Manual 256

CHAPTER 20
SD Card Support

This chapter provides basic information to understand install and use SD Card features.

Chapter Contents
SD Card Support ..257

Installing SD Card Support ...257

Using the SD Card ...259
Updating the Kernel and Ladder Diagram ..259

SD Card File Operations / Data Logging ...260
File System Operations Description ..260
File Identification ...261

File Transfer Tool ...261
Acessing the File Transfer (tool) ..261

Chapter 20 SD Card Support

Divelbiss Corporation - EZ LADDER Toolkit User Manual 257

SD Card Support
EZ LADDER Toolkit provides features for installing and using SD Card features for P-Series PLC on a
ChipTM targets. The SD Card may be used to install and update EZ LADDER target kernels and/or ladder
diagram programs, as part of the webserver as well as logging data using structured text.

 As this manual is a generic EZ LADDER Toolkit manual for P-Series PLC on a ChipTM target
 programming, SD Card Support is covered. To determine if the actual hardware target (model)
 supports the use of SD Cards, refer to Chapter 23 - Hardware Targets.

Installing SD Card Support
By default, SD Card features may not enabled or configured on P-Series hardware targets. The SD Card
Support port must be installed and configured using the Project....Bootloader Menu.

The first step is to open an existing program or create a new program (a simple one-rung program). This
program is required to switch EZ LADDER Toolkit from the EDIT mode to the RUN mode; which is required
for using the Bootloader Menu option. Make sure the serial port is configured correctly in the Project...Set-
tings menu. Refer to Chapter 4 - Configuring Targets and Chapter 5 - Creating Ladder Diagram Proj-
ects.

 The Bootloader Menu option is only available when EZ LADDER Toolkit is in the RUN mode and
 when actually connected to the hardware target.

Open or create the ladder diagram project and configure the serial port using the Project...Settings menu.
Click the monitor (MON) button located on the toolbar. EZ LADDER will switch from the EDIT mode to the
RUN mode. The toolbars will change appropriately.

In the RUN mode, select the Project menu and the select Bootloader. EZ LADDER will now attempt to
connect to the hardware target and initialize it’s bootloader. During this time, you may see a small status
window. If the Bootloader does not respond or an error is encountered, check the serial port settings and
cables.

 The bootloader is a factory installed utility program on all PLC on a ChipTM hardware targets. This
 utilility is used for configuring options on the target and to update or install target software kernels.

When the Bootloader utility responds, the Bootloader screen will automatically appear. See Figure 20-1.

Figure 20-1

Chapter 20 SD Card Support

Divelbiss Corporation - EZ LADDER Toolkit User Manual 258

Click the target options button. A new Target Options window will open. This window has two tabs: Ethernet
Options and SD Card Options. See Figure 20-2.

Select the SD Card Options Tab. Refer to Figure 20-3.

To enable the SD Card, click (check) the SD Card Enabled check-box. This enables the SD Card Features
in the target.

If you wish to allow kernel updates from an installed SD Card, click (check) the Allow Kernel Updates
check-box. How kernels are installed or updated is covered later in this chapter.

If you wish to allow Ladder Diagram updates from an installed SD Card, click (check) the Allow LD Updates
check-box. How ladder diagrams are installed or updated is covered later in this chapter.

Click ok to accept the SD Card settings and close the window. Click restart target to exit the Bootloader
and force the software kernel to restart, accepting the changes. The SD Card is now configured to operate
as configured.

Figure 20-2

Figure 20-3

Chapter 20 SD Card Support

Divelbiss Corporation - EZ LADDER Toolkit User Manual 259

Using the SD Card
 The SD Card Support must be installed using the Bootloader before any SD Card may be used.

 As this manual is a generic EZ LADDER Toolkit manual for P-Series PLC on a ChipTM target
 programming, SD Card Support is covered. To determine if the actual hardware target (model)
 supports the use of SD Cards, refer to Chapter 23 - Hardware Targets.

For targets that support the SD Card (Secure Digital Card), it is typically plugged-in (or inserted) into a
socket located on the hardware target.

 The type of SD Card and socket is target dependent. Refer to the hardware target’s User Manual for
 details on the type of SD Card supported and details for accessing and installing a supported SD
 Card.

Updating the Kernel and Ladder Diagram

An installed SD Card may be used to install or update a kernel or ladder diagram (or both). The SD Card
must have a directory named: update. The files to be installed or updated are located in the update direc-
tory of the SD Card.

 If the kernel is to be updated or installed, the actual target kernel file (.dat) must be copied or loaded
 into the update directory on the SD Card. This file can be found in the EZ LADDER kernel directory
 or other kernel files may used from other sources such as downloading from the website, etc. This
 file loading on the SD Card is done outside of EZ LADDER and the hardware target or using the
 Project.... File Transfer tool option in EZ LADDER.

 The kernel will only update from the SD Card when the kernel name (.dat) matches the kernel name
 installed on the hardware target and the version of the kernel on the SD CARD is newer. The kernel
 will install on a new target (without kernel installed already) if there is only one kernel file (only 1
 xxx.dat) in the update directory.

 If the ladder diagram is to be updated or installed, the actual compiled ladder diagram file (.hex) must
 be copied or loaded into the update directory on the SD Card. This file is found where the actual
 ladder diagram (.dld) file is located. This file loading on the SD Card is done outside of EZ LADDER
 and the hardware target or using the Project.... File Transfer tool option in EZ LADDER.

 The compiled ladder diagram program (.hex) will update from the SD Card when the controller starts
 (powered on) and the program on the SD card is not the exact same program (version and build
 number) that is already installed (provided the compiled .hex file matches the product type and is
 compatible with the kernel version installed).

 Additionally, if there is no ladder diagram installed on the target (blank) and there is only one .hex
 (compiled ladder diagram) file in the SD card’s update directory and the installed target’s kernel
 matches what is expected in the compile ladder diagram file (.hex) and the kernel is new enough to
 support the ladder diagram file (.hex), then the .hex file (ladder diagram) will in installed on the target.

 The controller will automatically load the .hex file provided the above conditions are met regardless
 if the currently installed program is the same. Care must be taken when downloading programs and
 having programs on the SD card. The SD card will over-write the downloaded program when power
 is cycled or the target is restarted.

Chapter 20 SD Card Support

Divelbiss Corporation - EZ LADDER Toolkit User Manual 260

 Kernel and ladder diagram updates are performed only on power-up of the hardware target (after the
 SD Card has been installed).

To install an update, install the pre-loaded SD Card into the target’s SD Card socket and cycle power. If the
above conditions are met, the file(s) will be updated on the target. The SD Card may be removed after the
update.

 At times, it may be required to cycle power a total of two times. This seen usually when updating the
 kernel and ladder diagram using the same SD card and if the kernel update required
 remapping of the PLC on a Chip’s internal memory (this is occasionally remapped to accommodate
 new features). By watching the Status / Watchdog LED, you can determine if the ladder program is
 running. If after an update, the LED is flashing slowly indicating the ladder diagram is not running,
 cycle the power again. If the problem still persists, check that the restrictions of the filename, etc. are
 not preventing the ladder diagram from loading.

SD Card File Operations / Data Logging
P-Series EZ LADDER Toolkit supports file write, read and seek operations that may be used to store infor-
mation to/from the SD card including logging data during normal operation beginning with P-Series EZ LAD-
DER Toolkit V1.2.2.0.

All SD Card file operations including data logging to the SD card is accessed via structured text using target
specific functions.

 Application Note(s) are available to download from www.divelbiss.com with descriptions and
 actual ladder diagrams with examples of logging data to an SD card.

For more details on using Structured Text and Structured Text target specific functions, refer to Chapter 26
- Structured Text and Appendix B - Target Specific ST Function Reference. All File System (SD Card)
structured text functions begin with EZ_FS_.

As the SD card may be accessed using file operations, it may be used to store and read additional param-
eters, store historical data (data-logging) and many more.

SD card data can be retrieved and sent to the cloud using VersaCloud M2M Portal Solutions. Contact Di-
velbiss for more information regarding sending SD card data to a VersaCloud M2M Portal.

File System Operations Description

The file system (SD Card file operations) controlled by structured text functions provides the basic function-
ality for creating, accessing, reading and writing data to the SD Card. Each individual function must be con-
trolled and combined with additional functions (EZ_FS functions and other functions) to take full advantage
of the file system (SD Card storage).

To use the file system (SD Card), each operation necessary must be performed in the correct order with ap-
propriate error detection. The following are guidelines for using the file system. For details on each function,
refer to Chapter 26 - Structured Text and Appendix B - Target Specific ST Function Reference.

Chapter 20 SD Card Support

Divelbiss Corporation - EZ LADDER Toolkit User Manual 261

For most steps, error detection and handling must be observed. The basic steps to using the file system are:

 1. Open (or create) the file on the SD Card. This uses the ST function EZ_FS_Open. This function
 has optional control flags for opening, creating and appending. Multiple files may be opened.

 2. Locate the point in the file to read data from or write data to (this also known as the file location
 pointer). To read or write data, the actual location in the file must be identified and a pointer
 positioned for subsequent use of read / write functions using the EZ_FS_Seek function. Depending
 upon the EZ_FS_Open flag implementation, the pointer may be located at the end of the file (using
 the append flag)

 3. Read and Write functions EZ_FS_Read, EZ_FS_ReadStr, EZ_FS_Write and EZ_FS_WriteStr
 functions are used to read and write data to / from the SD Card.

 4. The file should be closed after the reads and writes are completed using the EZ_FS_Close
 function. It is recommended to close the file after each read or write as any file left open with cached
 data is susceptible to losing data in the event of a power loss.

Other actions may include truncating a file using EZ_FS_Truncate function and flushing the cached data us-
ing the EZ_FS_Flush function and getting the file size using EZ_FS_Size.

File Identification

The file system using a unique file identification for each file. This identification is automatically assigned
by the EZ_FS_Open function when it is called (unique for each file open). This identification number (also
called the FileHandle must be kept (as a variable) in structured text and used to identify the file in use for
all additional functions (read, write, etc.) after the file open command (EZ_FS_Open) is used. Each EZ_FS
function requires the identification (FileHandle) to know which file to access (of the open files). Once a file is
closed, the identification is no longer valid.

File Transfer Tool
P-Series EZ LADDER Toolkit supports a built-in file transfer tool for reading, writing and erasing contents
from an SD card in a P-Series based controller. This can be used to load ladder diagram update files (.hex),
kernel files (.dat) or webserver files (multiple types).

Acessing the File Transfer (tool)

The File Transfer tool is located in the Project Menu. You must first be connected to the hardware target
(controller).

 1. Open a program or create a simple program with the target info.

Chapter 20 SD Card Support

Divelbiss Corporation - EZ LADDER Toolkit User Manual 262

 2. Change EZ LADDER to the Monitor mode by clicking the button.

 3. Make sure the target is connected to the computer and click the button to connect EZ
 LADDER Toolkit to the hardware target.

 4. From the menu at the top, select Project then select File Transfer. Refer to Figure 20-4.

 5. The File Browser window will open. An intermediate temporary dialog may be seen
 while the SD card is accessed. Refer to Figure 20-5.

 If there is no SD card or a corrupt card in the target (controller), an error dialog will result.
 Ensure the SD card is installed before trying to use the File Transfer option.

 6. The File Browser window shows the folder and file structure on the SD card. Use the download
 button to download files from the SD card to the PC, use the upload button to upload files from
 the PC to the SC card or use the delete button to delete files from the SD card.

 Note: depending on the file size, some file transfers may take extra time due to speed limitations of
 SD cards.

 7. Click the x in the upper-right hand corner to close the File Browser window when all file activity
 has been completed.

Figure 20-4

Figure 20-5

Divelbiss Corporation - EZ LADDER Toolkit User Manual 263

CHAPTER 21
EZ LADDER Toolkit Reports

This chapter provides basic information to understand how to create and use EZ LADDER
Toolkit project reports.

Chapter Contents
EZ LADDER Toolkit Reports ...264

Variable Definitions Report ..264
Cross References Report ...265

Chapter 21 EZ LADDER Toolkit Reports

Divelbiss Corporation - EZ LADDER Toolkit User Manual 264

EZ LADDER Toolkit Reports
EZ LADDER Toolkit includes reporting features to aid in creation, troubleshooting and documenting ladder
diagram projects. Each report, when generated, is viewable and printable.

There are two basic reports that can be generated: Variable Definitions and Cross References.

Variable Definitions Report

The variable definitions report provides a summary of all of the variables in the ladder diagram project.
These variables are sorted by type for easy reference. For each variable, the report shows Name, Type, I/O
Number, Default Value and its Description.

To generate and view this report, using the Reports Menu, select Variable Definitions. A report window will
open displaying the generated report. Controls are available to change pages and print. Figure 20-1 is an
example of the report that is seen or printed.

Figure 20-1

Chapter 21 EZ LADDER Toolkit Reports

Divelbiss Corporation - EZ LADDER Toolkit User Manual 265

Cross References Report

The Cross Reference Report provides a summary of the objects that are in the ladder diagram project. The
project objects are sorted by the type of object. The actual types of objects and data to view is selected prior
to generating the Cross Reference Report.

To generate and view this report, using the Reports Menu, select Cross References. The Cross Reference
Report dialog box will open with the choices to what objects to include in the report. See Figure 17-2.

Using the check boxes provided, select or de-select the items desired to be included on the Cross Refer-
ence Report. The items to select are:

 Input: This will include all real world inputs on the report.

 Output: This will include all real world outputs on the report.

 Internal: This will include all internal contacts and coils on the report.

 Function: This will include all functions (function blocks) used on the report.

 Unused Variables: This will list any variables that are in the ladder diagram project, but
 are not actually used in the ladder diagram itself (created but not used).

 Contact without Coil: This will list all contacts that have been created and are used in the
 ladder diagram, but have no coil used in the ladder diagram,

 Coil without Contact: This will list all coils that have been created and are used in the
 ladder diagram, but have no contacts used in the ladder diagram.

Figure 20-2

Chapter 21 EZ LADDER Toolkit Reports

Divelbiss Corporation - EZ LADDER Toolkit User Manual 266

 Drum Sequencer Tables: This will include all drum sequencer matrix tables on the report.

 Retentive Variables: This lists all variables (all types) that are configured to be retentive.

 Network Address / Register: This lists the variables and network addresses on the report (only
 variables with network addresses are listed).

For each option selected in the dialog box, the report is generated identifying the rung number, type and
description for each item.

Click ok to generate the report. A report window will open displaying the generated report. Controls are
provided to change pages and to print. Figure 20-3 represents the report that is viewed or printed.

Figure 20-3

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 267

CHAPTER 22
Troubleshooting

This chapter provides basic information to understand how to solve problems and to iden-
tify problems and common error message found using the EZ LADDER Toolkit.

Chapter Contents
Error Messages..268

Structured Text Errors ..271
Errors During Structured Text Verifying ...271
Errors During Structured Text Code Generation272

Common Ladder Diagram Errors ...272
Connecting Functions to Functions Errors ..272

Chapter 22 Troubleshooting

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 268

Error Messages
The following is a list of error messages that may be encountered when using the EZ LADDER Toolkit.
While you may experience any of these messages, many are rarely encountered. These error message may
appear as pop-up dialog boxes or in the Output window.

A different program is running (Monitor Mode)
When connecting to a target, the program running on the target is different than the program currently
opened in EZ LADDER Toolkit.

Could not connect to target (Monitor Mode)
EZ LADDER Toolkit was not able to connect to a hardware target.

Could not get target version. Please connect first (Monitor Mode)
EZ LADDER Toolkit was unable to retrieve the target version when using the target information feature or
button.

Could not open: COMX (Monitor Mode)
When connecting to a target, the selected Com Port does not exist or is in use. This is typically caused
when another application is using and locked the serial port as a resource. Close the other application to
correct this.

Error downloading file (Monitor Mode)
An unknown error occurred while downloading the program to target. Try downloading the program again.

ERROR downloading user program: invalid address (Monitor Mode)
An invalid address was detected in a communications packet while EZ LADDER Toolkit was connected to a
target.

ERROR downloading user program: invalid record (Monitor Mode)
An invalid record was detected in a communications packet while EZ LADDER Toolkit was connected to a
target.

ERROR downloading user program: checksum error (Monitor Mode)
An invalid checksum was detected in a communications packet while EZ LADDER Toolkit was connected to
a target.

ERROR downloading user program: record to long (Monitor Mode)
An invalid record length was detected in a communications packet while EZ LADDER Toolkit was connected
to a target.

ERROR putting target into bootloader (Monitor Mode)
An error occurred when EZ LADDER Toolkit was trying to access the target bootloader. Verify the serial
connections and settings, cables and the target.

Error, serial port not open (Monitor Mode)
The serial port that is configured in EZ LADDER Toolkit cannot be opened for use. This may caused when
another application is using and locked the serial port as a resource. Close the other application to correct
this.

Chapter 22 Troubleshooting

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 269

ERROR programming target (Monitor Mode)
EZ LADDER Toolkit detected an undefined error while attempting to store the project on the hardware target.
Repeat the download (and store process) to correct this issue.

Error staring program. Program doesn’t exist (Monitor Mode)
The program that is trying to start does not exist on the target. Download the program. This is typically
caused by clicking the Go button before the ladder diagram project is loaded on the target.

Error starting program. Program could not be started (Monitor Mode)
The program cannot be started. Re-compile and download the program.

Error while receiving packet (Monitor Mode)
There was an error when receiving communications packets from the target.

File could not be opened (Monitor Mode)
When downloading the program to target, the file with the compiled code could not be opened. The file
could have been moved or deleted. Compile the project and then download to the target.

Invalid Api (Monitor Mode)
When connecting to a target, the status box displays this message. The current EZ LADDER kernel and
compiled program versions are not compatible. This occurs typically when updating kernel without erasing
program or using a newer program with older kernel. Requires either changing kernel, EZ LADDER version
or recompiling.

Invalid File (Editor Mode)
The file you are trying to open in EZ LADDER Toolkit is not a valid EZ LADDER Toolkit ladder diagram file.

Invalid HEX file (Monitor Mode)
When downloading to a target, the file used to store compiled code is invalid, or corrupt. Re-compile the
ladder diagram project to correct this issue.

x is not supported by the current target (Editor Mode)
The object or function block that you are trying to use and place is not supported on target selected in the
Project Settings. This can be caused if the hardware target is changes after a ladder diagram is created,
then function blocks are edited. Either change the target or delete this function block / object.

Ladder program is not present (Monitor Mode)
No ladder diagram program was detected on the connected hardware target.

Link at: (x, y) had an invalid Grid point (Editor Mode)
The link is open or not connected at a grid point. Correct or re-draw the link.

Link is not valid (Editor Mode)
The link you are trying to create is not valid. This is typically caused when trying to link one type of vari-
able (integer, real, etc) to a function block or object that does not support that type or all variables linked to
the function block must be identical types and you are trying to link a variable that does not match the types
already connected to the function block.

Nack or No acknowledgement sent from target (x) (Monitor Mode)
The target did not send a no acknowledgement during communications with EZ LADDER Toolkit. This error
can occur occasionally based on many factors. Click ok to clear.

Chapter 22 Troubleshooting

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 270

Object already there (Editor Mode)
An object already exists where you are trying to place another object. Select a new location to place the
object.

Object type: X, not found Aborting load (Editor Mode)
Error loading program into EZ LADDER Toolkit. The ladder diagram file may be corrupt.

Packet contained a formatting ERROR (Monitor Mode)
An packet formatting error was detected in a packet during communication with a target.

Packet contained an invalid checksum (Monitor Mode)
An invalid checksum was detected in a packet during communication with a target.

Packet length was invalid (Monitor Mode)
An invalid communications packet length was detected during communications with the connected target.

Please save project before compiling (Editor Mode)
EZ LADDER Toolkit projects must be saved prior to allowing them to be compiled. Save the ladder diagram
project.

Please select a target (Editor Mode)
A target has not been selected. You must select and configure a target in the Project Settings before placing
any objects and function blocks.

Please select a target before compiling (Editor Mode)
Unable to compile because no target was selected. You must select and configure a target in the Project
Settings before compiling.

Please select a target before verifying (Editor Mode)
Unable to run program verification because no target is selected. You must select and configure a target in
the Project Settings before verifying.

Targets do not match (Monitor Mode)
When connecting to a target the target specified in the ladder diagram project does not match the actual
detected hardware target connected to the serial port. Correct the target in the Project Settings.

Target does not support bootloader (Monitor Mode)
This specific target is too old to support any bootloader functions. Contact Support for options.

There is not enough room for the paste. Increase the number of rungs (Editor Mode)
There is not enough rung space to paste from the clipboard. Increase the number of rungs where the paste
is to occur.

There is not enough room to the right of the paste point. (Editor Mode)
There is not enough room at the insertion point to paste objects from the clipboard. Paste the objects farther
left.

This object must be place in the last column (Editor Mode)
The selected object can only be placed in the last column. All coils can only be placed in the last column.

Chapter 22 Troubleshooting

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 271

Timeout ERROR. Entire packet was not received (Monitor Mode)
During communication with a target, part of a packet was lost or not received.

Timeout ERROR. Target didn’t respond (Monitor Mode)
During communication with a target, the target did not respond. Check the cables, connections, target and
Serial port settings in EZ LADDER Toolkit.

Undefined packet type (Monitor Mode)
EZ Ladder has detected a undefined communications packet during communications with the connected
target.

Structured Text Errors

The following is a list of structured text specific error messages that may be encountered when using the EZ
LADDER Toolkit. These error message may appear as pop-up dialog boxes or in the Output window. For
more details on structured text, refer to Chapter 26 - Structured Text.

Errors During Structured Text Verifying

The following is a list of structured text specific error messages that may be encountered when structured
text is verified. Verification may be manually initiated in the Structured Text Editor. It is also performed auto-
matically as a prerequisite during a ladder diagram Compile.

This error message gets formatted as {POU Name} {Location}: ERROR STV{Error Num}: {Description}

Member Name Value Description
Variable 1000 Generic variable error
Variable_NotDefined 1001 Variable is not defined message -> Variable {0} is not defined
Variable_NotModifiable 1002 Variable is not modifiable message ->
Variable_TypeMismatch 1003 Types don't match
Variable_NotArray 1004 Variable is not an array, don't use '[]' message -> Variable {0} is not an

array
Variable_IsArray 1005 Variable is an array, make sure use '[]' message -> Variable {0} is an ar-

ray, but subscript list is missing
Variable_ConstantNotInialized 1006 constant variable is not initialized message -> CONSTANT Variable {0}

not initialized
Variable_ExternMustBeConstant 1007 Global Variable is defined as a constant, so external must be constant

message -> Variable {0} is defined as CONSTANT
Variable_TooManyInit 1008 array has to many initializers message -> Variable {0} has too many

initializers
Function 2000 Generic Function Error
Function_NotDefined 2001 Function is not defined message -> Function {0} is not defined
FunctionBlock 3000 Generic Function Block Error
FunctionBlock_InstanceUndefined 3001 Function Block Instance is not defined message -> Function Block

instance is undefined: {0}
FunctionBlock_NotSupportedHere 3002 Function Block is not supported here message -> Invalid expression,

Function Block name {0} not supported here

Chapter 22 Troubleshooting

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 272

Member Name Value Description
TypeDeclarations 4000 Generic type definition errors
TypeDecl_NotDefined 4001 Type is not defined
EnumDeclarations 5000 Generic enumeration errors
EnumDecl_NotDefined 5001 Enumeration is not defined

Errors During Structured Text Code Generation

The following is a list of structured text specific error messages that may be encountered when structured
text code is generated.

Member Name Value Description
Variable 1000 Generic Variable ERROR
Variable_NotDefined 1001 Variable is not defined message -> Variable {0} is not defined
Func_GenCode 2000 Generic code generation error, message -> Failed generating code for

{0}
Func_GenCode_TooManyParams 2001 In function call user specified too many function parameters message ->

Too many parameters for function call: {0}
Func_GenCode_TooLittleParams 2002 In function call user didn't specify enough function parameters message

-> Too little parameters for function call: {0}
FuncBlk_GenCode 3000

Common Ladder Diagram Errors
When creating ladder diagram projects using EZ LADDER Toolkit, here are some of the common errors
made during the creating process.

Connecting Functions to Functions Errors

When connecting Variable outputs of one function to a variable input of another function, a variable must be
placed between the two functions. Figure 22-1 illustrates the incorrect way of connecting functions to func-
tions (variable inputs and outputs). Figure 22-2 illustrates the same ladder diagram project, but with the
corrections made (a variable between the function blocks).

 If a function’s variable output is connected directly to another functions’ variable input, the program
 will compile successfully, however; the program will not function as designed.
 A variable must be placed between the output and the input for proper operation.

Chapter 22 Troubleshooting

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 273

Figure 22-1

Figure 22-2

Cannot connect directly

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 274

CHAPTER 23
Hardware Targets

This chapter provides detailed information for P-Series PLC on a Chip based hardware
targets including supported functions and features for each as well as specific information
needed to use hardware features.

Chapter Contents
P-Series PLC on a ChipTM Integrated Circuits ...276

PLCHIP-P13-5122X ..276
PLCHIP-P10-5122X ..277

HEC-P6xxx Series..279
HEC-P6000 ...279
HEC-P6010 ...280
HEC-P6100 ...281
HEC-P6110 ...282
HEC-P6200 ...283
HEC-P6210 ...284

HEC-P5xxx Series..286
HEC-P5000 ...286
HEC-P5010 ...287
HEC-P5100 ...288
HEC-P5110 ...289
HEC-P5200 ...290
HEC-P5210 ...291

HEC-P2xxx Series..293
HEC-P2000 ...293
HEC-P2001 ...294
HEC-P2010 ...295

HEC Gateway Series ...297
HEC-GW-C-W ...297
HEC-GW-C-X ..298
HEC-GW-X-W ...299
HEC-GW-X-X ..300

VB-2xxx Series...302
VB-2000 ..302
VB-2100 ..303

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 275

VB-2120 ..304
VB-2200 ..305

P-Series Bear Bones Controllers ...307
ICM-BB-P13-30 ...307
ICM-BB-P13-31 ...308
ICM-BB-P13-40 ...309
ICM-BB-P13-41 ...310

VersaGateway Programmable Communications Gateways312
VCG-E-C-G ...312
VCG-E-C-X ..313
VCG-E-X-G ...314
VCG-E-X-X ..315
VCG-W-C-G ..316
VCG-W-C-X ...317
VCG-W-X-G ..318
VCG-W-X-X ...319

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 276

P-Series PLC on a ChipTM Integrated Circuits
Each P-Series PLC on a ChipTM integrated circuit model supports different features and function blocks.
Typically, the larger memory models support more features and function blocks. For all P-Series PLC on a
ChipTM models, any feature listed must be individually installed using the Project Settings Menu.

PLCHIP-P13-5122X

All listed features and function blocks listed are supported individually. Using certain features or function
blocks may limit the availability of other features and function blocks.

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (using FM24xxx)
Up to 164 I/O Digital I/O
Up to 12 PWM Outputs
Quadrature Input
3 High Speed Counter / Timer Inputs
Up to 8 Analog Inputs, On-Board
Up to 1 Analog Output, On-Board
Up to 4 Serial Ports
Up to 2 CAN Ports
Ethernet Port / Wi-Fi
Up to 3 I2C Ports
Up to 2 SPI Ports
EEPROM Storage (3500 bytes)

Modbus Master / Slave
Modbus TCP over Ethernet / Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
Character (CHR) LCD Support
Graphics (GFX) LCD Support
Keypad Support
Expandable Analog using SPI / I2C
SD Card Storage
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Ceiling (CEIL)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)

Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad (KEYPAD)
Keypad2 (KEYPAD2)
Label
Latching Coil (LATCH)
LCD Clear (LCD_CLEAR)
LCD Print (LCD_PRINT)
Limit (LIMIT)
LS7366R Quad Counter (CNTR_LS7366R)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 277

MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)

Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

PLCHIP-P10-5122X

All listed features and function blocks listed are supported individually. Using certain features or function
blocks may limit the availability of other features and function blocks.

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (using FM24xxx)
Up to 106 I/O Digital I/O
Up to 3 PWM Outputs
Quadrature Input
2 High Speed Counter / Timer Inputs
Up to 8 Analog Inputs, On-Board
Up to 1 Analog Output, On-Board
Up to 4 Serial Ports
Up to 2 CAN Ports
Ethernet Port / Wi-Fi
Up to 3 I2C Ports
Up to 2 SPI Ports
EEPROM Storage (3500 bytes)

Modbus Master / Slave
Modbus TCP over Ethernet / Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
Character (CHR) LCD Support
Graphics (GFX) LCD Support
Keypad Support
Expandable Analog using SPI / I2C
SD Card Storage
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)

Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Ceiling (CEIL)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 278

Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad (KEYPAD)
Keypad2 (KEYPAD2)
Label
Latching Coil (LATCH)
LCD Clear (LCD_CLEAR)
LCD Print (LCD_PRINT)
Limit (LIMIT)
LS7366R Quad Counter (CNTR_LS7366R)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)

PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 279

HEC-P6xxx Series
Each HEC-P6xxx model supports different features and function blocks based differences in the internal
hardware. When any HEC-P6xxx model is selected in the Project Settings, some supported functions are
automatically installed while others must be manually installed.

HEC-P6000

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
14 Digital Inputs - Sink / Source (DC)
12 PWM / 12 On, Off Digital Outputs (DC)
2 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
4 Analog Inputs, Range/Type Field Adjustable
2 Analog Outputs, 0-10VDC
2 Serial Ports RS232/RS485

2 CAN Ports
Ethernet Port
EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Ethernet
OptiCAN Networking
J1939 / NMEA 2000 Networking
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)

J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 280

Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)

Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-P6010

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
14 Digital Inputs - Sink / Source (DC)
12 PWM / 12 On, Off Digital Outputs (DC)
2 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
4 Analog Inputs, Range/Type Field Adjustable
2 Analog Outputs, 0-10VDC
2 Serial Ports RS232/RS485
2 CAN Ports

Ethernet Port
EEPROM Storage (3500 bytes)
GPS Module Port
Modbus Master / Slave
Modbus TCP over Ethernet
OptiCAN Networking
J1939 / NMEA 2000 Networking
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
Cellular Modem for Versacloud M2M+IoT Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)

Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 281

Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)

Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-P6100

Features

Supported Function Blocks

Retentive Memory (FRAM 480 bytes)
14 Digital Inputs - Sink / Source (DC)
12 PWM / 12 On, Off Digital Outputs (DC)
2 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support

4 Analog Inputs, Range/Type Field Adjustable
2 Analog Outputs, 0-10VDC
2 CAN Ports
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)

Floor (FLOOR)
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 282

Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)

Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
Bitwise XOR (XOR)

HEC-P6110

Features

Supported Function Blocks

Retentive Memory (FRAM 480 bytes)
14 Digital Inputs - Sink / Source (DC)
12 PWM / 12 On, Off Digital Outputs (DC)
2 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
4 Analog Inputs, Range/Type Field Adjustable
2 Analog Outputs, 0-10VDC

2 CAN Ports
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Cellular Modem for Versacloud M2M+IoT Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Hysteresis (HYSTER)

Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 283

Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)

Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Bitwise XOR (XOR)

HEC-P6200
Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
14 Digital Inputs - Sink / Source (DC)
12 PWM / 12 On, Off Digital Outputs (DC)
2 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
4 Analog Inputs, Range/Type Field Adjustable
2 Analog Outputs, 0-10VDC
2 Serial Ports RS232/RS485
2 CAN Ports

GPS Module Port
Wi-Fi Connectivity
EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)

Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 284

PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)

Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-P6210
Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
14 Digital Inputs - Sink / Source (DC)
12 PWM / 12 On, Off Digital Outputs (DC)
2 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
4 Analog Inputs, Range/Type Field Adjustable
2 Analog Outputs, 0-10VDC
2 Serial Ports RS232/RS485
2 CAN Ports

GPS Module Port
Wi-Fi Connectivity
EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
Cellular Modem for Versacloud M2M+IoT Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)

EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 285

Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)

Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 286

HEC-P5xxx Series
Each HEC-P5xxx model supports different features and function blocks based differences in the internal
hardware. When any HEC-P5xxx model is selected in the Project Settings, some supported functions are
automatically installed while others must be manually installed.

HEC-P5000

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
16 Digital Inputs - Sink / Source (DC)
12 PWM / On, Off Digital Outputs (DC)
4 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Analog Inputs, Range/Type Field Adjustable
2 Serial Ports RS232/RS485
2 CAN Ports

Ethernet Port
EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Ethernet
OptiCAN Networking
J1939 / NMEA 2000 Networking
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)

J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 287

Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)

Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-P5010

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
16 Digital Inputs - Sink / Source (DC)
12 PWM / On, Off Digital Outputs (DC)
4 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Analog Inputs, Range/Type Field Adjustable
2 Serial Ports RS232/RS485
2 CAN Ports
Ethernet Port

EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Ethernet
OptiCAN Networking
J1939 / NMEA 2000 Networking
512K SRAM
GPS Module Port
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
Cellular Modem for Versacloud M2M+IoT Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)

Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Modulo (MOD)
Multiplication (MULT)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 288

Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP) PLCHIP
Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)

Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-P5100

Features

Supported Function Blocks

Retentive Memory (FRAM 480 bytes)
16 Digital Inputs - Sink / Source (DC)
12 PWM / On, Off Digital Outputs (DC)
4 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP

SD Card Support
2 Analog Inputs, Range/Type Field Adjustable
2 CAN Ports
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)

Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 289

PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)

Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
Bitwise XOR (XOR)

HEC-P5110

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
16 Digital Inputs - Sink / Source (DC)
12 PWM / On, Off Digital Outputs (DC)
4 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Analog Inputs, Range/Type Field Adjustable

2 CAN Ports
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking
512K SRAM
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Cellular Modem for Versacloud M2M+IoT Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)

Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Modulo (MOD)
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP) PLCHIP
Quad Counter Velocity (CNTR_PXX_VEL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 290

PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)

Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Bitwise XOR (XOR)

HEC-P5200

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
16 Digital Inputs - Sink / Source (DC)
12 PWM / On, Off Digital Outputs (DC)
4 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Analog Inputs, Range/Type Field Adjustable
2 Serial Ports RS232/RS485
2 CAN Ports
Wi-Fi Connectivity

EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Wi-Fi
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
OptiCAN Networking
J1939 / NMEA 2000 Networking
GPS Port
512K SRAM
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)

EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 291

Minimum (MIN)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Modulo (MOD)
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)

Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-P5210

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
16 Digital Inputs - Sink / Source (DC)
12 PWM / On, Off Digital Outputs (DC)
4 On,Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Analog Inputs, Range/Type Field Adjustable
2 Serial Ports RS232/RS485
2 CAN Ports
Wi-Fi Connectivity

EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
GPS Port
512K SRAM
Cellular Modem for Versacloud M2M+IoT Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)

Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 292

J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Moving Average (MAVG)
Maximum (MAX)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)

Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 293

HEC-P2xxx Series
Each HEC-P2xxx model supports different features and function blocks based differences in the internal
hardware. When any HEC-P2xxx model is selected in the Project Settings, some supported functions are
automatically installed while others must be manually installed.

HEC-P2000

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
8 Digital Inputs - Sink / Source (DC)
8 PWM / On, Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
1 Serial Port RS232

1 Serial Port RS485
1 CAN Port
EEPROM Storage (3500 bytes)
Modbus Master / Slave
OptiCAN Networking
J1939 / NMEA 2000 Networking
GPS Port

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label

Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 294

Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)

Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Bitwise XOR (XOR)

HEC-P2001

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
8 Digital Inputs - Sink / Source (DC)
8 PWM / On, Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
Wi-Fi Connectivity
SD Card Support
1 Serial Port RS232
1 Serial Port RS485
1 CAN Port

EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
GPS Port
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)

J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 295

Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)

Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-P2010

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
8 Digital Inputs - Sink / Source (DC)
8 PWM / On, Off Digital Outputs (DC)
Quadrature Input
3 High Speed Counter / Timer Inputs - NPN/PNP
Wi-Fi Connectivity
SD Card Support
1 Serial Port RS232
1 Serial Port RS485
1 CAN Port

EEPROM Storage (3500 bytes)
Modbus Master / Slave
Modbus TCP over Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
GPS Port
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
Cellular Modem for Versacloud M2M+IoT Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)

Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 296

PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)

Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 297

HEC Gateway Series
Each HEC Gateway model (HEC-GW-X-X) supports different features and function blocks based differences
in the internal hardware. When any HEC-GW-X-X model is selected in the Project Settings, some supported
functions are automatically installed while others must be manually installed.

HEC-GW-C-W

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
1 Digital Inputs - Sink / Source (DC)
1 PWM / On, Off Digital Outputs (DC)
1 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Serial Ports RS232
1 CAN Port
EEPROM Storage (3500 bytes)
Modbus Master / Slave

Modbus TCP over Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
GPS Port
Cellular Modem for Versacloud M2M+IoT Data
Wi-Fi Connectivity
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)

Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 298

Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)

Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-GW-C-X

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
1 Digital Inputs - Sink / Source (DC)
1 PWM / On, Off Digital Outputs (DC)
1 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Serial Ports RS232
1 CAN Port
EEPROM Storage (3500 bytes)

Modbus Master / Slave
OptiCAN Networking
J1939 / NMEA 2000 Networking
GPS Port
Cellular Modem for Versacloud M2M+IoT Data
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)

J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 299

Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)

Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Bitwise XOR (XOR)

HEC-GW-X-W

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
1 Digital Inputs - Sink / Source (DC)
1 PWM / On, Off Digital Outputs (DC)
1 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Serial Ports RS232
1 CAN Port
EEPROM Storage (3500 bytes)
Modbus Master / Slave

Modbus TCP over Wi-Fi
OptiCAN Networking
J1939 / NMEA 2000 Networking
GPS Port
Wi-Fi Connectivity
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)

J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 300

Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)

Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

HEC-GW-X-X

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
1 Digital Inputs - Sink / Source (DC)
1 PWM / On, Off Digital Outputs (DC)
1 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
2 Serial Ports RS232

1 CAN Port
EEPROM Storage (3500 bytes)
Modbus Master / Slave
OptiCAN Networking
J1939 / NMEA 2000 Networking
GPS Port

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)

J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Label
Latching Coil (LATCH)
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PLCHIP Quad Counter (CNTR_PXX_QEI)
PLCHIP Quad Counter Compare (CNTR_PXX_CMP)
PLCHIP Quad Counter Velocity (CNTR_PXX_VEL)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 301

Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)

Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Bitwise XOR (XOR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 302

VB-2xxx Series
Each VB-2XXX model supports different features and function blocks based differences of the on-board
hardware. When any VB-2XXX model is selected in the Project Settings, some supported functions are
automtically installed while others must be manually installed. Additional features may become available via
plug-in expansion boards (VB2X-X-X-X)

VB-2000

Features

Supported Function Blocks

Retentive Memory (FRAM 480 bytes)
12 Digital Inputs - Sink / Source (DC)
8 PWM / On, Off Digital Outputs (DC)
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
7 Analog Inputs, Range/Type Field Adjustable
1 Analog Output, Range/type Field Adjustable
2 Serial Ports RS232/RS485
1 CAN Port
EEPROM Storage (3500 bytes)

Modbus Master / Slave
OptiCAN Networking
MQTT* IoT Communications
SNTP*(Simple Network Time Protocol)
J1939 / NMEA 2000 Networking
VBDSP-X Display Port
Keypad Port
Din Rail Mount
Accepts VB2X-X-X-X Expansion Boards
DCCoAP Communications*

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)

Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Print
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 303

VB-2100

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
12 Digital Inputs - Sink / Source (DC)
8 PWM / On, Off Digital Outputs (DC)
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
7 Analog Inputs, Range/Type Field Adjustable
1 Analog Output, Range/type Field Adjustable
2 Serial Ports RS232/RS485
1 CAN Port
Ethernet Port
EEPROM Storage (3500 bytes)

Modbus Master / Slave
Modbus TCP over Ethernet
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
OptiCAN Networking
J1939 / NMEA 2000 Networking
VBDSP-X Display Port
Keypad Port
Din Rail Mount
Accepts VB2X-X-X-X Expansion Boards
DCCoAP Communications

Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)

Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M* (VCLOUD)
Bitwise XOR (XOR)

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)

Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)

* VersaCloud, DCCoAP, MQTT and SNTP Enabled using VB2X-X-X VersaCloud M2M Plug-in Expansion Board

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 304

Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)

Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VB-2120

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
12 Digital Inputs - Sink / Source (DC)
8 PWM / On, Off Digital Outputs (DC)
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
7 Analog Inputs, Range/Type Field Adjustable
1 Analog Output, Range/type Field Adjustable
2 Serial Ports RS232/RS485
1 CAN Port
Wi-Fi Connectivity
EEPROM Storage (3500 bytes)

Modbus Master / Slave
Modbus TCP over Wi-Fi
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
OptiCAN Networking
J1939 / NMEA 2000 Networking
VBDSP-X Display Port
Keypad Port
Din Rail Mount
Accepts VB2X-X-X-X Expansion Boards
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)

Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 305

J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PWM (PWM)
PWM Frequency (PWM_FREQ)

Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VB-2200

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
12 Digital Inputs - Sink / Source (DC)
8 PWM / On, Off Digital Outputs (DC)
3 High Speed Counter / Timer Inputs - NPN/PNP
SD Card Support
7 Analog Inputs, Range/Type Field Adjustable
1 Analog Output, Range/type Field Adjustable
2 Serial Ports RS232/RS485
1 CAN Port
Ethernet Port
EEPROM Storage (3500 bytes)

Modbus Master / Slave
Modbus TCP over Ethernet
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
OptiCAN Networking
J1939 / NMEA 2000 Networking
Standard LCD Display Port
Keypad Port
Din Rail Mount
Accepts VB2X-X-X-X Expansion Boards
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)

Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 306

EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)

Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
PWM (PWM)
PWM Frequency (PWM_FREQ)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Serial Print (SERIAL_PRINT)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 307

P-Series Bear Bones Controllers
Each P-Series Bear Bones controller model supports different features and function blocks based differ-
ences of the on-board hardware. When any P-Series Bear Bones model is selected in the Project Settings,
some supported functions are automtically installed while others must be manually installed. Additional fea-
tures may be available using plug-in expansion boards (ICM-BBP13EXP-X-X-X)

ICM-BB-P13-30

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
8 Digital Inputs - Sink / Source (DC)
8 On, Off Digital Outputs (DC)
SD Card Support
Up to 8 Analog Inputs, Field Adjustable
Up to 1 Analog Output, Field Adjustable
1 CAN Port
Ethernet Port
EEPROM Storage (3500 bytes)
Modbus TCP over Ethernet

MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
OptiCAN Networking
J1939 / NMEA 2000 Networking
Standard LCD Display Port
Keypad Port
Expandable I/O
Accepts ICM-PUI-01 Expansion Board
Accepts VersaCloud M2M Plug-in Expansion Boards
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)

J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 308

Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)

Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

ICM-BB-P13-31

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
8 Digital Inputs - Sink / Source (DC)
8 On, Off Digital Outputs (DC)
SD Card Support
Up to 8 Analog Inputs, Field Adjustable
Up to 1 Analog Output, Field Adjustable
1 CAN Port
EEPROM Storage (3500 bytes)
MQTT* IoT Communications

SNTP* (Simple Network Time Protocol)
OptiCAN Networking
J1939 / NMEA 2000 Networking
Standard LCD Display Port
Keypad Port
Expandable I/O
Accepts ICM-PUI-01 Expansion Board
Accepts VersaCloud M2M Plug-in Expansion Boards
DCCoAP Communications*

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME

Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 309

ICM-BB-P13-40

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
8 Digital Inputs - Sink / Source (120VAC)
8 On, Off Digital Outputs (120VAC)
SD Card Support
Up to 8 Analog Inputs, Field Adjustable
Up to 1 Analog Output, Field Adjustable
1 CAN Port
Ethernet Port
EEPROM Storage (3500 bytes)
Modbus TCP over Ethernet
MQTT IoT Communications

SNTP (Simple Network Time Protocol)
Webserver
OptiCAN Networking
J1939 / NMEA 2000 Networking
Standard LCD Display Port
Keypad Port
Accepts ICM-PUI-01 Expansion Board
Accepts VersaCloud M2M Plug-in Expansion Boards
Expandable I/O
Accepts ICM-PUI-01 Expander
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)

Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)

Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)

Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Bitwise XOR (XOR)

* VersaCloud, DCCoAP, MQTT and SNTP Enabled using VB2X-X-X VersaCloud M2M Plug-in Expansion Board

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 310

Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)

Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

ICM-BB-P13-41

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
8 Digital Inputs - Sink / Source (120VAC)
8 On, Off Digital Outputs (120VAC)
SD Card Support
Up to 8 Analog Inputs, Field Adjustable
Up to 1 Analog Output, Field Adjustable
1 CAN Port
EEPROM Storage (3500 bytes)
MQTT* IoT Communications

SNTP* (Simple Network Time Protocol)
OptiCAN Networking
J1939 / NMEA 2000 Networking
Standard LCD Display Port
Keypad Port
Expandable I/O
Accepts ICM-PUI-01 Expansion Board
Accepts VersaCloud M2M Plug-in Expansion Boards
DCCoAP Communications*

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)

EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 311

Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)

Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Bitwise XOR (XOR)

* VersaCloud, DCCoAP, MQTT and SNTP Enabled using VB2X-X-X VersaCloud M2M Plug-in Expansion Board

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 312

VersaGateway Programmable Communications Gateways
Each VersaGateway model supports different features and function blocks based differences of the on-board
hardware. When any VersaGateway model is selected in the Project Settings, some supported functions are
automtically installed while others must be manually installed.

VCG-E-C-G

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
Full Size SD Card Support
Up to 1 Analog Input, Battery Monitor
1 Standard CAN Port
1 NMEA 2000 Compliant CAN Port
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking
2 Serial Ports (RS232/RS485)

Ethernet Port
Modbus Master / Slave
Modbus TCP over Ethernet
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
GPS Port
512K SRAM
Versacloud M2M+IoT Cellular Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)

Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 313

Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)

Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VCG-E-C-X

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
Full Size SD Card Support
Up to 1 Analog Input, Battery Monitor
1 Standard CAN Port
1 NMEA 2000 Compliant CAN Port
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking
2 Serial Ports (RS232/RS485)

Ethernet Port
Modbus Master / Slave
Modbus TCP over Ethernet
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
512K SRAM
Versacloud M2M+IoT Cellular Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)

J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 314

Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)

Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VCG-E-X-G

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
Full Size SD Card Support
Up to 1 Analog Input, Battery Monitor
1 Standard CAN Port
1 NMEA 2000 Compliant CAN Port
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking
2 Serial Ports (RS232/RS485)

Ethernet Port
Modbus Master / Slave
Modbus TCP over Ethernet
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
512K SRAM
GPS Port
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)

J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 315

Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)

Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VCG-E-X-X

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
Full Size SD Card Support
Up to 1 Analog Input, Battery Monitor
1 Standard CAN Port
1 NMEA 2000 Compliant CAN Port
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking

2 Serial Ports (RS232/RS485)
Ethernet Port
Modbus Master / Slave
Modbus TCP over Ethernet
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
512K SRAM
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)

J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 316

Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)

Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VCG-W-C-G

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
Full Size SD Card Support
Up to 1 Analog Input, Battery Monitor
1 Standard CAN Port
1 NMEA 2000 Compliant CAN Port
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking
2 Serial Ports (RS232/RS485)

Wi-Fi Connectivity
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
Modbus Master / Slave
Modbus TCP over Wi-Fi
GPS
512K SRAM
Versacloud M2M+IoT Cellular Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME

Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 317

Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)

Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VCG-W-C-X

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
Full Size SD Card Support
Up to 1 Analog Input, Battery Monitor
1 Standard CAN Port
1 NMEA 2000 Compliant CAN Port
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking
2 Serial Ports (RS232/RS485)

Wi-Fi Connectivity
Modbus Master / Slave
Modbus TCP over Wi-Fi
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
512K SRAM
Versacloud M2M+IoT Cellular Data
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)
Get Time (GETTIME

Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)
Bitwise OR (OR)
PID (PID)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 318

Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)
Set / Reset -Set Dominant (SR)

Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VCG-W-X-G

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
Full Size SD Card Support
Up to 1 Analog Input, Battery Monitor
1 Standard CAN Port
1 NMEA 2000 Compliant CAN Port
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking
2 Serial Ports (RS232/RS485)

Wi-Fi Connectivity
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
Modbus Master / Slave
Modbus TCP over Wi-Fi
GPS
512K SRAM
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)

Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 319

Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)

Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

VCG-W-X-X

Features

Supported Function Blocks

On-Board Real Time Clock
Retentive Memory (FRAM 480 bytes)
Full Size SD Card Support
Up to 1 Analog Input, Battery Monitor
1 Standard CAN Port
1 NMEA 2000 Compliant CAN Port
EEPROM Storage (3500 bytes)
OptiCAN Networking
J1939 / NMEA 2000 Networking

2 Serial Ports (RS232/RS485)
Wi-Fi Connectivity
MQTT IoT Communications
SNTP (Simple Network Time Protocol)
Webserver
Modbus Master / Slave
Modbus TCP over Wi-Fi
512K SRAM
DCCoAP Communications

Less Than (<)
Less Than Equal To (<=)
Not Equal To (<>)
Equal To (=)
Greater Than (>)
Greater Than Equal To (>=)
Absolute Value (ABS)
Arc Cosine (ACOS)
Addition (ADD)
Arc Sine (ASIN)
Arc Tangent (ATAN)
Bitwise AND (AND)
Average (AVG)
Bit Pack (BIT_PACK)
Bit Unpack (BIT_UNPACK)
Convert to Boolean (BOOLEAN)
Compare (CMP)
Cosine (COS)
Count Down (CTD)
Count Up (CTU)
Count Up / Down (CTUD)
Division (DIV)
Drum Sequencer (DRUM_SEQ)
EEprom Read (EEPROM_READ)
EEprom Write (EEPROM_Write)
Exponential (EXP)
Power Function (EXPT)
Falling Edge Detect (F_TRIG)
Floor (FLOOR)
Get Date (GETDATE)

Get Time (GETTIME
Hysteresis (HYSTER)
Convert to Integer (INTEGER)
J1939 Receive PGN (J1939_RX_PGN)
J1939 Transmit PGN (J1939_TX_PGN)
Jump (JMP)
Keypad
Keypad2
Label
Latching Coil (LATCH)
LCD Display
LCD Clear
Limit (LIMIT)
Natural Logarithm (LN)
Base-10 Logarithm (LOG)
Modbus Master (MODBUS_MASTER)
Modbus Master2 (MODBUS_MASTER2)
Modbus Master3 (MODBUS_MASTER3)
Moving Average (MAVG)
Maximum (MAX)
Minimum (MIN)
Modulo (MOD)
MQTT_Connect
MQTT_Publish
MQTT_Receive
Multiplication (MULT)
Multiplexer (MUX)
Bitwise NOT (NOT)
Optican Node Status (OPTICAN_NODESTATUS)
Optican Transmit Message (OPTICAN_TXNETMSG)

Chapter 23 Hardware Targets

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 320

Bitwise OR (OR)
PID (PID)
Rising Edge Detect (R_TRIG)
Random (RANDOM)
Convert to Real (REAL)
Rotate Left (ROL)
Rotate Right (ROR)
Reset / Set -Reset Dominant (RS)
Seed Random (SEED)
Select (SEL)
Set Date (SETDATE)
Set Time (SETTIME)
Shift Left (SHL)
Shift Right (SHR)
Sine (SIN)
Square Root (SQRT)

Set / Reset -Set Dominant (SR)
Structured Text Function (ST_FUNC)
Structured Text Function Block (ST_FUNC_BLK)
Subtraction (SUB)
Tangent (TAN)
Convert to Timer (TIMER)
Time Delay Off (TOF)
Time Delay On (TON)
Timer Counter (TimerCounter)
Pulse Timer (TP)
Uart Set Property (UART_SET_PROPERTY)
Unlatching Coil (UNLATCH)
VersaCloud M2M (VCLOUD)
Webserver_Data
Bitwise XOR (XOR)

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 321

CHAPTER 24
Webserver

This chapter provides detailed information for using the Webserver feature with P-Series
PLC on a Chip based targets.

Chapter Contents
Webserver Overview ...322

Webserver Resource Addressing ..322

IP Addressing, Wi-Fi and Ethernet ...323

Installing the Webserver in the Ladder Diagram Project324

The Ladder Diagram WEBSERVER_DATA Function Block326

The WEBSERVER EZData API ...328
Pre-Defined Data Objects ... 328
WEBSERVER_DATA Function Block Data Objects 328

Requesting, Sending & Displaying Data ..329
Requesting & Displaying Data ...329
Updating / Sending Data to the Embedded Application331
Other HTML / Javascript / JSON Information332
Resource Control ..333
Web Browser Issues ...333

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 322

Disclaimer
This chapter is intended as an informational tool of how the Embedded Webserver works
with some basic instruction how to install it as well as basic examples of coding to send and
receive data from web pages (.html) on the webserver to / from the ladder diagram.

A strong understanding of web design including html, javascript and JSON is required
based on the level of complexity of the final application. This chapter is not intended to in-
struct how to code html or javascript, but only provide the basic structure necessary for the
transfer of data.

Webserver Overview
The P-Series Embedded Webserver is an embedded webserver on the P-Series PLC on a Chip products
and is accessed from the target’s ladder diagram making the ladder side programmable using the P-Series
EZ LADDER Toolkit. For this functionality, the target (or product), must have an on-board SD card. As the
title indicates, it is a webserver, it also must support a web enabled interface such as Ethernet or Wi-Fi (not
cellular)

The webserver is capable of serving stored documents, html (web pages) and files on the SD card to web-
enabled devices. The actual web pages (html) and other supporting files are stored on the SD card and the
web enabled devices such as a PC or tablet will browse to the files with the webserver handling the interac-
tion as any webserver serving webpages or files.

The P-Series Embedded webserver is an HTTP server that supports JSON formatted data confirming to the
Divelbiss EZData API to pass data to and from the ladder diagram running on the hardware target (product).

 Supported HTTP version: HTTP 1.0 (with some 1.1 featues)

 Supported HTTP Method: GET, POST

Webserver Resource Addressing
When using the embedded webserver, care must be taken when addressing resources. Resources can
only be referenced using relative or absolute addresses, but relative addressing is only allowed in specific
instances.

 Relative addressing may be used:
 When the the current page is referenceing resources (files or other pages) AND the current page is
 NOT the default/root page AND the resource is NOT a Divelbiss EZData resource (webserver
 block in the ladder diagram). The default/root page is defined in the webserver setup when the
 webserver is installed in the ladder diagram and would be the page pointed to when the browser
 address is “http://<IP Address/>”

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 323

 In cases where relative addressing is not allowed or not desired, the following address scheme must
 be used. It is also permissible to embed the http://<IPADDRESS>/into the path, but it is not required.

 <Data or Web Tag>: - For EZ Web data (JSON Data to/from ladder) use: ezdata
 - For EZ Web file (web browser address bar) use : ezweb

 <Drive Type>: - For files stored on SD Card use: sd
 (<Drive Type> only applicable for EZ Web tag)

 <Drive Letter>: - Drive Letter of SD Card that file is located on use: m
 (<Drive Letter> only applicable for SD card Drive Types)

Addressing Examples

 Relative Addressing (Standard HTTP relative addressing is allowed):
 For a file located in the same directory as the current page.

 For a file located in the parent directory as the current page.

 Absolute Addressing :
 For a file located on the sd card at “/webserver/images/image1.png”

 To access a webserver ladder diagram block named “ParameterGroup1” via javascript
 <var ezWebAPI=”http://<IP Address>/ezdata/ParameterGroup1”>

 The complete path is required to browse to the default / root page and any images or links on this
 page must be absolute.

 An easy solution is to provide a ‘re-direct’ on this page to a new main page on the sd card that will
 act as the main index page of the site. This new main page would allow relative addressing (except
 for accessing the ezdata / ladder diagram data transfer).

IP Addressing, Wi-Fi and Ethernet
The IP address is determined by multiple factors. The actual target (product) with the webserver can be con-
figured (see it’s configuration settings) with a static IP or use DHCP.

Static IP refers to an IP address that is manually entered into the target that will not change. This is the IP
Address of the target and thus becomes the IP Address of the webserver (http://<IP Address>/).

 When connected via Ethernet (static) if the network is configured to support Hostname, then the
 hostname may be used as the address.

 When connected via Wi-Fi, the hostname is not supported, only IP Address may be used.

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 324

When configured for DHCP, the IP Address is not hard coded, but does follow certain guidelines. The guide-
lines are different depending upon which type of connection is used (Ethernet or Wi-Fi).

 For Ethernet, when configured as DHCP, the target will acquire its IP Address from the network it is
 connected to. If the network is configured to support Hostname, then the hostname may be used as
 the address.

 For Wi-Fi, when configured for DHCP and set to client mode, the target will aquire its IP address from
 the network it is connected to.

 If the Wi-Fi is set to Host mode, the target will aquire its IP Address from the internal Wi-Fi module
 and will default to 192.168.0.101

Installing the Webserver in the Ladder Diagram Project
Before the webserver can be used and the webserver function blocks placed in the ladder diagram, the web-
server must be installed in the ladder diagram project.

 1. Open the ladder diagram to install the webserver in. It is only supported in P-Series targets
 and must also support the SD card and either Ethernet or Wi-Fi.

 2. In EZ LADDER, use the Project.....Settings menu at the top. The Project Settings window
 will open.

 3. Select the target and click the properties button. The ‘target’ Properties window will open.

 4. Verify the Wi-Fi or Ethernet device and the SD Card is already installed in the project. If not,
 install them before proceeding. See Figure 24-1. (Refer to the appropriate sections of this
 manual for details in installing Ethernet/Wi-Fi and SD Card).

Ethernet is Installed

SD Card is Installed

Figure 24-1

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 325

 5. Click the add device button. The PLCHIP-PXX Devices window will open. Select the
 Webserver and click ok. See Figure 24-2.

 6. The Webserver Properties window will open. See Figure 24-3.

 7. Select the Communication Interface (Ethernet or Wi-Fi). This selects the interface.

 8. Select the SD Card in the Available File Interfaces pane and click the add button to move the
 SD card to the Selected File Interfaces pane. This selects the SD card as the storage.

 9. Enter the name of the default or root web page in the Default File field.

Figure 24-2

Figure 24-3

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 326

 10. Leave the Use Standard Buffer Sizes box checked. Typically, these setting are sufficient.

 11. Click the ok button. The Webserver Properties window will close.

 12. Click the ok button. The ‘target’ Properties window will close.

The webserver is now installed in the ladder diagram project making the webserver function block available
in the ladder diagram.

The Ladder Diagram WEBSERVER_DATA Function Block
The WEBSERVER_DATA function block is used in the ladder diagram as the interface to communicate via
the embedded webserver to web enabled devices accessing the stored web files on the sd card. This func-
tion block allows for variables to be selected that are to be sent / received via the webserver interface.

To Place the WEBSERVER_DATA function block:

 1. From the EZ LADDER Toolkit drop down function menu, select WEBSERVER_DATA.

 2. Locate the position in the ladder diagram where the function is to be added and click that
 positiion. The Webserver Data Group properties window will open. See Figure 24-4.

 3. Enter data for the communications to the webserver:

 Block Name: This unique name will be used in the web page / javascript /
 JSON for communications. It should be named uniquely to
 idenfity the purpose of the block.

 Block Description: Optional info for the block to describe what is is used for.

Figure 24-4

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 327

 Variable Mapping: Variables that are being sent / received will appear here.

 Add Variable button: Adds variables to be sent / received. The variable must already
 exist in the ladder diagram. It cannot be created in this dialog.

 Delete Variable button: Deletes variables to be sent / received from the block.

 Allow Read Access: Allows the webserver to read the variables in this block.

 Allow Write Access Allows the webserver to write the variables in this block.

 4. Add the variables and select the options as needed. Refer to Figure 24-5.

 5. Click the ok button. The Webserver Data Group properties window will close and the block
 will be placed. See Figure 24-6.

 6. As with all function blocks, the EN (enable) input enables the function block and the Q output
 is true when the function is enabled. An integer variable must be connected to the TC port.
 This TC port is the current tic count (internal timing tic) and is updated each time this function
 block communicates to the webserver.

 Multiple WEBSERVER_DATA blocks may be used in the ladder diagram.

Figure 24-5

Figure 24-6

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 328

The WEBSERVER EZData API
The webserver EZDataAPI is used to send and receive data between the embedded application and the
web enabled client (browser). As was previously shown in Chapter 1, all EZData requests are made with the
base URL of: /ezdata/ .

Data Format
The Divelbiss EZData API uses JSON formatted data.

Supported Variable Types
Integer, Real, Boolean, Structured Text global variables and arrays (no Structs).

Pre-Defined Data Objects
There are pre-defined data objects that when used, the connected device will respond with known informa-
tion that is independent of the WEBSERVER_DATA function blocks in the ladder diagram.

 Read Device Information

 Using GET and /ezdata/Device_information

 The device will respond (if successful) with the following JSON data:

 Status: 200 OK

 {
 “Device_information”: {
 “Serial_number”: 123456789,
 “Bootloader_version”: “1.1.1.1”,
 “Kernel_version”: “1.2.2.2”,
 “Program_name”: “MyApplication1”,
 “Program_version”: “0.0.0.1”,
 “Program_build”: 50,
 }
 }

 The data will still have to be parsed and used on the web page.

WEBSERVER_DATA Function Block Data Objects
Web enabled devices communicated via the web page (html, javascript and JSON) to the device using the
WEBSERVER_DATA function blocks shown earler. The communication is read and write accessible (using
the GET and POST commands).

 To read from a WEBSERVER_DATA function block named: Temperatures1

 Using GET and /ezdata/Temperatures1

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 329

 The device will respond (if successful) with the following JSON data:

 Status: 200 OK

 {
 “Temperatures1”: {
 “Ambient”: 55,
 “Tire1”: 75,
 “Tire2”: 77
 }
 }

 The data will still have to be parsed and used on the web page.

Requesting, Sending & Displaying Data
The webserver EZDataAPI is used to send and receive data between the embedded application and the
web enabled device as shown previously.

Requesting & Displaying Data
The following is an simple example of the html (javascript and html) to communicate to the embedded device
(webserver block), parse the data and the display the information received on a browser page. This exact
example is the Simple Data Read No External Files example found in the webserver_examples.zip.

This example uses a webserver block named sensor_data and will request and receive three data points:
temperature, pressure and speed. As shown earlier, the variable names in the ladder diagram (webserver
block) must be the same as the JSON/javascript to read the data successfully. After the data is read, it is
parsed and then three html web page elements (DIV) tags with unique id’s are updated with the values re-
ceived.

Variable Names
In function block

Variable values from
the ladder diagram

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 330

<script>
 // Start periodic data download
 downloadData();

 function downloadData()
 {
 var ezWebAPI = “http://” + location.hostname + “/ezdata/sensor_data”;

 var xmlhttp = new XMLHttpRequest();

 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == XMLHttpRequest.DONE) {
 if (xmlhttp.status == 200) {
 // Get JSON data from response
 var data = JSON.parse(this.responseText);

 // Update divs with new data
 document.getElementById(‘temp’).innerHTML = data.sensor_data.temp;
 document.getElementById(‘press’).innerHTML = data.sensor_data.press;
 document.getElementById(‘speed’).innerHTML = data.sensor_data.speed;

 // Set Timer to get next set of data after 1000ms
 window.setTimeout(downloadData, 1000);
 }
 }
 };

 xmlhttp.open(“GET”, ezWebAPI, true);
 xmlhttp.send();
 }

</script>

Variable Names
In function block

webserver block
name

ezweb location
and webserver
block name for
API

function (and
name) to read
data and update
DIVs

Causes function
to run once when
page loads

These 3 lines copy
the values (data) and
update the DIVs in
the webpage to view

This line schedules
this function to run
again in 1000 milli-
seconds

DIV ids in web-
page to update

Javascript / JSON Code (in web page)

 <!-- HTML PAGE DATA -->
 <h2>Device Data</h2>
 <table style=”font-family: arial, sans-serif; border-collapse: collapse;”>
 <tr><th>Temperature</th><th>Pressure</th><th>Speed</th></tr>
 <tr><td id=”temp”></td><td id=”press”></td><td id=”speed”></td></tr>
 </table>

HTML Code (in web page)

ids “temp”, “press” and
“speed” are updated
from downloadData
function with values
from embedded device.

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 331

 This example is shown using document.getElementByID and innerHTML as ways to update
 elements on the webpage; however, there are several web design elements that may be utilized to
 display and update on the webpage. The correct element to use is dependent upon the needs of the
 end application.

Updating / Sending Data to the Embedded Application
The following is a simple example of the html (javascript and html) to communicate to the embedded device
(webserver block) to take updated (input data) from the webpage and send the data to the embedded device
(embeeded application). This exact example is the Simple Data Write No External Files example found in
the webserver_examples.zip.

This example uses a webserver block named sensor_data and one of the three data points at a time when
the corresponding Update button is pressed: temperature, pressure and speed. As shown earlier, the vari-
able names in the ladder diagram (webserver block) must be the same as the JSON/javascript to write the
data successfully. This example does this a little differently as it receives the variable name from the button
that was pressed (the name temp, press or speed is passed to the javascript when the actual Update button
is pressed). The HTML uses 3 text form fields to enter data and in this example, there is no range or type
checking.

<!-- HTML PAGE DATA -->
 <h2>PLC on a Chip Device Information</h2>
 <table>
 <tr>
 <td width=”125”>Temperature</td>
 <td width=”150”><input type=”text” id=”temp”></td>
 <td><button onclick=”sendData(‘temp’)”>Update</button></td>
 </tr>
 <tr>
 <td>Pressure</td>
 <td><input type=”text” id=”press”></td>
 <td><button onclick=”sendData(‘press’)”>Update</button></td>
 </tr>
 <tr>
 <td>Speed</td>
 <td><input type=”text” id=”speed”></td>
 <td><button onclick=”sendData(‘speed’)”>Update</button></td>
 </tr>
 </table>

HTML Code (in web page)

When Temperature Update
button is clicked, send-
Data function is called and
‘passed’ the value and
name of temp.

When Pressure Update
button is clicked, send-
Data function is called and
‘passed’ the value and
name of press.

When Speed Update button
is clicked, sendData func-
tion is called and ‘passed’
the value and name of
speed.

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 332

Javascript / JSON Code (in web page)

<script>

 function sendData(parameterName, parameterValue)
 {
 // Get form form value
 var data_obj = {};
 data_obj[parameterName] = document.getElementById(parameterName).value;
 var obj = {“sensor_data”:data_obj};

 var ezWebAPI = “http://” + location.hostname + “/ezdata/sensor_data”;

 var xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == XMLHttpRequest.DONE) {
 if (xmlhttp.status == 200) {
 // Success. Do something here if desired.
 }
 else{
 alert(“Error sending data: ERROR “ + xmlhttp.status)
 }
 }
 };

 xmlhttp.open(“POST”, ezWebAPI, true);
 xmlhttp.setRequestHeader(“Content-Type”, “application/json;”);
 xmlhttp.send(JSON.stringify(obj));

 }

</script>

Function name (passed parameter
name or in this case variable name,
parameter value in this case new value
to send to embedded device.

Converts passed data
into JSON object to send
to embedded device us-
ing API.

Sets up API with web-
server location and web-
server block name

If send is successful, this
code area is active.

If send fails, this code
area is active.

Other HTML / Javascript / JSON Information
The examples shown were for simple pages, one with a read from the embedded webserver and one with a
write to the embedded webserver. Functionality may be combined as needed in the application to do both or
kept as individual items as long as all the data transmission needs and formats are kept.

As with all HTML web design, the webpages can be developed using HTML, CSS and other languages to
make colorful and dynamic layouts to fix the application needs.

Chapter 24 Webserver

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 333

Web Browser Issues

 As the embedded webserver relies on a web browser to receive and receive data using javascript
 and JSON, as well as display data, browser differences and known issues must be considered when
 developing an application. It is recommended to test the application for the intended browser and
 audience.

 Here is a list of some browser issues to consider and test for:

 Apple Safari
 If more than one webserver send/receive script on a webpage, Safari may send too many requests
 at one time to the webserver causing it to appear to lag or hang. Adding resource locking to the
 scripting to lockout so that only one script can be sending/receiving at time corrects this problem.

 On mobile devices, there is no ‘debug’ information to help when developing the application.

 Microsoft Internet Explorer
 Internet Explorer may or may not work depending on the actual version and / or its settings. As the
 embedded webserver receives data to display, it relies on receiving this data on a consistent basis.
 Some versions and configurations of Internet Explorer have caching enabled. This caching will only
 allow the page to display the values on the first load, but not update values after. This is due to the
 page does not believe the page has changed. If possible, disable the caching. This is Internet
 Explorer version dependent. Internet Explorer can provide ‘debug’ information.

 Microsoft Edge
 Edge may or may not work depending on the actual version. As the embedded webserver receives
 data to display, it relies on receiving this data on a consistent basis. Some versions of Edge caching
 seems to work properly allowing for updates to come through while others do not. There are no
 settings to disable the caching on Edge. Edge can provide ‘debug’ information.

 Google Chrome
 On tested versions, Chrome did not cause have any issues with caching or resource control.
 Chrome can provide ‘debug’ information.

Resource Control

 The embedded webserver must parse the JSON data and can only do so one request at a time.
 The embedded webserver can generally handle read requests from multiple sources provided there
 are not too many devices simultaneously requesting data or they are not requesting data too
 frequently or there are not requesting too much data. As the number of devices and amount of data
 is application specific, care must be taken to allow sufficient time for processing.

 The Apple Safari browser sometimes sends too many requests, which may cause the embedded
 webserver to appear to hang until it can process all the requests. When using Safari, it is
 recommended to use resource locking in the webpage to allow only one javascript (function) to send
 or receive from the embedded webserver at a time.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 334

CHAPTER 25
Password Protection

This chapter provides information on securing ladder diagram projects and targets using
EZ LADDER Toolkit native password protection.

Chapter Contents
Password Protection Overview ..335

Configuring Password Protection ...335
Master Password ...336
Creating Lower-Level Passwords ..336
Editing Lower-Level Passwords ..337
Removing Lower-Level Passwords ...338

Chapter 25 Password Protection

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 335

Password Protection Overview
Password protection may be used on all P-Series PLC on a ChipTM targets. There may be multiple pass-
words for a ladder diagram project. When using Password protection, the Master password is the only
pre-named password. Other lower-level passwords and descriptions may be created as needed to provide
maximum versatility in allow certain individuals to certain ladder diagram project features.

 If password protection is enabled in a ladder diagram project, a password will be required prior to the
 project opening and being viewed in the EZ LADDER Toolkit Workspace.

Configuring Password Protection
By default, no passwords are set for a new ladder diagram project (.dld). If password protection is desired,
the protection must be configured using the Project...Settings Menu.

Select the target (PLCHIP-PXX) and click the properties button. The Target Properties window will open.
From the drop-down menu (DCPN), select the model / part number of the target. Click ok to save the Target
Properties and close the Target Properties Window. You are now back at the Project Settings Window. See
Figure 25-1.

In the bottom left corner of the Project Settings window, click the edit passwords button. The Password Setup
window will open. This window is used to configure the passwords for the ladder diagram project. See Figure
25-2.

Figure 25-1

Chapter 25 Password Protection

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 336

Master Password

The Master Password is exactly as phrased. This password is the highest level password in the ladder
diagram project. This password should be set and kept closely guarded. When this password is entered, it
provides access to all EZ LADDER Toolkit features of the ladder diagram project and allows editing of other
level passwords. Enter a master Password in the Master Password box. You will need to re-enter the same
password in the Verify Master Password box.

 Until the Master Password and Verify Master Password boxes are equal, no other window functions
 will be functional.

 The Master Password should be recorded in a safe place. There is no user-provided way to remove
 or bypass the Master Password. If you have lost your Master Password, you will need to contact
 Divelbiss Corporation for options in recovering access to the program.

Once into the Password Setup window, the Master Password can be changed by entering a new password
in both the Master Password and the Verify Master Password boxes. It may also be removed by completely
clearing both boxes.

 If the password Setup is closed by clicking OK, the passwords installed will take effect immediately.
 Verify you have recorded the Master Password.

Creating Lower-Level Passwords

Additional passwords for lower-level functions may be created. Refer to Figure 25-2.

To add a new password, click the add button. A new Row in the Passwords section of the Password Setup
window will appear. Refer to Figure 25-3

Figure 25-2

Chapter 25 Password Protection

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 337

 Description: Enter a description for the password’s function.

 Password: Enter the password.

 Edit File: When checked, if this password is used, the user will be able to
 edit the ladder diagram project (ladder diagram).

 Monitor: When checked, if this password is used, the user will be able to
 monitor the program in EZ LADDER Toolkit (Run mode) and
 see the program operate in real time.

 Monitor Modify Variable Values: When checked, if this password is used, the user will be able to
 monitor the program in EZ LADDER Toolkit, see the program
 operate in real time and be able to modify variable values.

 Download LD Program: When checked, if this password is used, the user will be able to
 download the ladder diagram program to the hardware target
 (replacing the current program installed on the hardware target).

 Enter Bootloader: When checked, if this password is used, the user will be able to
 enter the Bootloader on the hardware target and will allow the
 user to make any changes normally allowed in the bootloader,
 including updating the kernel.

Editing Lower-Level Passwords

To edit lower-level passwords, the Master Password is required. When prompted for a password, enter the
Master Password. The Password Setup window will be used. Refer to Figure 25-3.

Figure 25-3

Chapter 25 Password Protection

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 338

Removing Lower-Level Passwords

To remove lower-level passwords, the Master Password is required. When prompted for a password, enter
the Master Password. The Password Setup window will be used. Refer to Figure 25-3.

Passwords may be deleted by highlighting the row in the window (click on the row) and clicking the remove
button.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 339

CHAPTER 26
Structured Text

This chapter provides information on using Structured Text in EZ LADDER Toolkit.

Chapter Contents
Structured Text Overview ...341

Structured Text Technical Support ..341

Structured Text Introduction ..341

Structured Text Variables ...342
Variable Declarations ..343
Supported Variable Data Types ..344

Structured Text Language ..344
Arithmetic Operators & Functions ...346
Relational Operators ...347
Logical Operators ..348
Bitwise Operators ..348
Order of Execution ..348
Standard Functions ...348
Constructs & Statements ...350

Structured Text Function Blocks ...350
ST_FUNC_BLK Function Block ..351

Target Specific ST Functions ...352
File Descriptors ...352

EZ LADDER Structured Text Editor ...353
Function List Pane ...353
Output Pane ...355

User-Defined Functions & Function Blocks ...355
Creating a New User-defined Function or Function Block355
Editing an Existing User-defined Function or Function Block356

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 340

Copying / Pasting ST Functions & Function Blocks 357

Exporting / Importing ST Functions & Function Blocks 359
Exporting ST Functions / Function Blocks ...360
Importing ST Functions / Function Blocks ...361

Viewing Structured Text Variables in Run Mode 362

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 341

Structured Text Overview
Structured Text is a high level textual language which is an IEC61131-3 language. Structured Text; also
called ST is used in EZ LADDER to create custom functions and function blocks. Structured Text syntax
resembles PASCAL as it is based on it.

Structured Text is a powerful programming tool to create custom functions and function blocks for items such
as serial communication drivers, complex mathematical calculations and many more.

 This manual section provides basics on structured text support including supported
 statements, commands, EZ LADDER specific items and basic syntax and is not a structured
 text programming manual or tutorial. Other Structured Text sources should be used for a total
 understanding of how Structured Text is used to accomplish actions. Structured Text is not
 an intuitive or easy to use language; therefore, it should only be used by those with
 adequate Structured Text knowledge or experience.

Structured Text Technical Support
 Structured Text technical support for EZ LADDER Toolkit in regards to help with how to create
 programs, functions and function blocks is limited to our Ticket Support System. Refer to
 https://www.divelbiss.com/tech.html for details on requirements for submitting a structured text
 support request via our Ticket Support System. Our Ticket Support System allows the support item
 to be evaluated and routed to the appropriate support personnel based on the content and needs to
 provide the quickest and best responses to questions and issues.

Structured Text Introduction
Structured Text is one of the included languages of the IEC-61131 standard. Using Structured Text, functions
and function blocks may be created to perform actions. These functions and function blocks are designed
to operate with other programming languages and therefore may ‘call’ other functions or function blocks and
may also be ‘called’ from the main ladder diagram, other function or function block. If you are familiar with
other high level languages such as C, Structured Text (ST) programming will be similar.

Each program, function and function block begin and end with their respective statements. Between the
statements, is where all the variables are declared and the actual actions are taken using other commands
and statements such as For...Next, etc. Figure 26-1 is a sample of a custom function block using structured
text.

 One of the important differences between other programming languages and Structured Text is
 program flow. It is possible to program Structured Text so that it will loop indefinitely, giving
 undesired results and operation, possibly preventing the controller from scanning and operating the
 ladder diagram correctly.

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 342

The example shown in Figure 26-1 is the ST code for a function block named DoubleN. This block’s pur-
pose is to take an integer input, double it and then output the result.

As shown, the ST language is composed of statements separated by semicolons. These statements and
subroutines are used to change variables defined. These defined variables may be defined values such as
constants, internally stored variables, input and outputs. Spaces are used to separate variables from state-
ments. Semicolons are used to signify the end of most code lines (as shown in Figure 26-1).

 As shown in Figure 26-1, it is good form to indent variable declarations and subroutines. This allows
 easier reading and scanning of the line of code for debugging purposes.

Structured Text Variables
Structured Text programming requires named variables to be defined. Variable names must begin with a
letter with the remaining name being any combinations of letters, numbers and some symbols (such as ‘_’).
While variable names are not case sensitive, the use of case can be helpful for readability.

 Certain variable names are reserved and cannot be used. Names of functions, function blocks,
 statements and others items are not allowed as variable names. Examples of invalid variable names
 would be IF, EXP, etc. If an incorrect variable name is used, an error should occur during the code
 ‘Verify’.

Figure 26-1 - ST Function Editor

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 343

Variable Declarations

The variable declaration statements in figure 26-2 may be used to declare variables and name them in a
callable structured text function or function block. Certain declarations are limited based on the type of call-
able ST code (if function or function block). Callable in this instance refers to if the function or function
block will be called from the ladder diagram and only applies to the input / output variable declara-
tions. ST functions (function blocks) called from other ST functions (function blocks) do not have these
limitations.

Declaration Description Use with
ST_FUNC

Use with
ST_FUN_

BLK

VAR A general variable declaration. Used for internal function (block) declara-
tions. Keeps variable values from call to call. X

VAR_INPUT Defines variables that are treated as inputs to the function (block). These
values are passed into the function (block) from an external source. X X

VAR_OUTPUT Defines variables that are treated as outputs to other functions (blocks).
These values are passed to other external items (function, etc). X X

VAR_EXTERNAL Used to access variables from the ladder diagram or variables declared
under the ‘Global’ user declarations. X

VAR_TEMP A general variable declaration. Used for internal function (block) declara-
tions. Does not keep variable values from call to call. X

VAR_IN_OUT
Defines variables that are treated as both inputs and outputs to other
functions (blocks). These values are received from and passed to other
external items (function, etc).

X

For the variable declarations listed in Figure 26-2, additional restrictions apply depending whether the ST
code is a function or a function block. Figure 26-3 lists the type of actual variables that may be used in a lad-
der diagram callable function (function block) when used with VAR_IN, VAR_OUT or VAR_IN_OUT declara-
tions (input / outputs to function or function block). Internal variable declarations are not limited.

Variable Data
Type Description Use with

ST_FUNC

Use with
ST_FUN_

BLK
BOOL Boolean value (0,1, True, False) X X

DINT Double Integer (32 bit) X X

REAL Float (real) number with decimal point X X

 Only the variable data types listed in Figure 26-3 may be used in ladder diagram callable functions or
 function blocks as variable declaration types for input or output (VAR_IN, VAR_OUT, VAR_IN_OUT).
 The use of other data types for input or output variable declarations will result in the function or
 function block not appearing in the selection menu for inserting the function or function block into the
 ladder diagram. Other variable data types may be used internally to the function or function block.

Figure 26-2 - Variable Declarations as Input/Output of Callable Function or Function Block

Figure 26-3 - Variable Data Type for Input/Output Declarations of Callable Functions & Function Blocks

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 344

As shown in 26-1, all variable declarations begin with the VAR (see Figure 26-2) statement to identify the
beginning of the variable declaration and end with the VAR_END statement to identify where the variable
declaration ends.

All the previous Figures and examples have illustrated the variable declarations and data types that are sup-
ported for the inputs and outputs of callable functions and function blocks. Other data types are supported
for functions and function blocks provided they are internal to the function or function block and are not
declared as an Input or Output.

Supported Variable Data Types

The variable types listed in Figure 26-4 are supported in EZ LADDER Toolkit Structured Text. Some limita-
tions apply depending upon the type of function or function block and the type of variable declaration.

Keyword Data Type Bit Size Internal Data Type Input/Output Data
Type

BOOL Boolean 1 X X
SINT Short Integer 8 X
INT Integer 16 X
DINT Double Integer 32 X X
LINT Long Integer 64 X
USINT Unsigned Short Integer 8 X
UINT Unsigned Integer 16 X
UDINT Unsigned Double Integer 32 X
ULINT Unsigned Long Integer 64 X
REAL Real Numbers 32 X X
LREAL Long Real Numbers 64 X
BYTE Bit String of length 8 8 X
WORD Bit String of length 16 16 X
DWORD Bit String of length 32 32 X
LWORD Bit String of length 64 64 X
ARRAY [..] OF Array of Type --- X
STRING [# of bytes] ASCII String of [x] bytes in length --- X

Structured Text Language
Structured Text (ST) language is uses a combination of assignments, expressions, construct statements,
variables and comments to form function or function blocks.

Assignments are used in ST to assign values to tags (variables). Assignments use the operator := (colon
and equal signs).

In Structured Text, to set a Variable named Pi to 3.14, see Figure 26-5.

Figure 26-4 Supported Data Types

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 345

Expressions may be part of an assignment or construct statement. An expression evaluates to a number
(numerical expression, INT, REAL) or to a true or false condition (BOOL). An expression may contain vari-
ables, constants, operators and functions. Refer to Figure 26-6.

Expression
Contains Description / Definition Example

Variables Variable where data is stored inside the function (BOOL, INT, DINT, REAL) Pi

Constants A hard coded constant value 6

Operators A symbol that specifies a operation within an expression (+, -, *, /) Vb1 + Vb2

Functions
When executed, a function call returns a single value. Parenthesis are used to
contain the operand of a function call. Functions can be used in expressions while
instructions cannot.

functionname (vbl)

Instructions are standalone statements that when executed, uses one or more values that are part of it’s
data structure. Instructions are terminated with a semi colon (;). Instructions cannot be used in expressions.

A typical instruction would appear as: instruction (operand1, operand2...);

Constructs are conditional statements used to trigger additional structure text code depending upon the
evaluation of a condition. Conditional statements are terminated with a semi colon (;).

Typically used constructs:

 IF...THEN CASE FOR...DO
 WHILE...DO REPEAT...UNTIL EXIT

Figure 26-7 is a sample of using a construct in a function block.

Figure 26-5

Figure 26-6

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 346

Comments are used in a function or function block to explain, clarify and document what a section of struc-
tured text does and any information the programmer wants to include. Comments are helpful when revisiting
code in a function or function block.

Comments may appear anywhere in the structured text and have no effect on the structured text execution.
Comments are identified in structured text by the use of parenthesis and asterisks (* or *). Figure 26-8 is an
example of adding comments to a function block.

Arithmetic Operators & Functions

A major advantage to programming in structured text is the ability to make custom functions or function
blocks that include complex calculations and mathematical features. Structured text supports many arithme-
tic operators and standard functions for creating these complex calculations.

Figure 26-9 lists the standard arithmetic operators supported by EZ LADDER Toolkit’s function ST Editor.
Although not shown, a semi colon (;) ends each operator line. Parenthesis should be used to control order of
operation.

Figure 26-7

Figure 26-8

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 347

To Operator Example
Add + X := A1 + A2 + A3....
Subtract - X := A1 - A2
Multiply * X := A1 * A2 * A3....
Exponent (xy) EXPT X := A1**A2
Divide / X := A1 / A2
Modulo-divide MOD X := A1 MOD A2

The arithmetic functions in Figure 26-10 are supported by EZ LADDER Toolkit’s Structured Text.

Function Description Syntax
ABS Absolute Value of a numeric expression. ABS (numeric_expression)
ACOS Arc Cosine of a numeric expression. ACOS (numeric_expression)
ASIN Arc Sine of a numeric expression. ASIN (numeric_expression)
ATAN Arc Tangent of a numeric expression ATAN (numeric_expression)
COS Cosine of a numeric expression COS (numeric_expression)

EXP Exponential of a numeric expression. EXP (numeric_expression)

EXPT Exponent of two numerical expressions. EXPT (num_exp1, num_exp2)
LN Natural Log of a numeric expression LN (numeric_expression)
LOG Log Base 10 of a numeric expression LOG (numeric_expression)
SIN Sine of a numeric expression SIN (numeric_expression)
SQRT Square Root of a numeric expression SQRT (numeric_expression)
TAN Tangent of a numeric expression TAN (numeric_expression)
TRUNC Truncate a numerical expression. TRUNC (numeric_expression)

Relational Operators

Relational operator compare two values (strings or numerical expressions) and provide a true or false result
based on the comparison. The result of a relational operator is always a true or false (BOOL, 0 or 1).

Figure 26-11 lists the supported relational operators for EZ LADDER Toolkit’s Structured Text.

Operator Description Example
= Equal to. IF X = 1 THEN...
< Less Than IF X < 25 THEN..

<= Less Than or Equal to IF X <=15 THEN..
> Greater Than IF X > 5 THEN..

>= Greater Than or Equal to IF X >= 100 THEN..

<> Not Equal to IF X <> 6 THEN..

Figure 26-9

Figure 26-10

Figure 26-11

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 348

Logical Operators

Logical operators are used to compare if multiple conditions are true or false. The result of a logical operator
is always a true or false (BOOL, 0 or 1). These operators are helpful in determining a status of multiple items
and performing an action based on that status. Figure 26-12 lists the supported logical operators in EZ LAD-
DER Toolkit’s Structured Text. Parenthesis should be used to control logical flow.

Operator Description Example
AND Logical AND IF X = 1 AND Y = 2 THEN...
OR Logical OR IF X = 2 OR X=4 THEN..

XOR Logical Exclusive OR IF XOR (A,B) = 1 THEN..
NOT Logical Complement IF NOT(A) = 1 THEN..

The combination of arithmetic, relational and logic operators allow for complex control of multiple inputs and
outputs in a control scheme.

Bitwise Operators

Bitwise operators are used to manipulate bits within values based on two additional values. Different from
logical operators, bitwise operators actually compare the bits of the number and not the entire number. The
results will differ.

Operator Description Example
AND Bitwise AND Z := X AND Y
OR Bitwise OR Z := X OR Y

XOR Bitwise Exclusive OR Z := A XOR B
NOT Bitwise Complement Z := NOT B

Order of Execution

Operation written into structured text expressions are performed in a prescribed order. This order may be
from left to right, but not always, depending upon the operators and language used.

Operations that have equal order will be performed left to right.

 When writing expressions with multiple operations and functions, it is ideal to use parenthesis to
 group the conditions. This will control the order (or flow) of execution and also makes it easier to
 read and understand the expression.

Standard Functions
Figure 26-14 lists the supported EZ LADDER Toolkit’s Structured Text standard functions. These functions
are standard in structured text and conform to the IEC-61131-3 standard.

Figure 26-12

Figure 26-13

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 349

Function Function Function Function Function
BYTE_TO_DINT INT_TO_LINT LSB_UDINT_TO_ARRAY RIGHT UDINT_TO_DWORD

BYTE_TO_DWORD INT_TO_LREAL LSB_UINT_TO_ARRAY ROL UDINT_TO_INT

BYTE_TO_INT INT_TO_LWORD LSB_ULINT_TO_ARRAY ROR UDINT_TO_LINT

BYTE_TO_LINT INT_TO_REAL LSB_WORD_TO_ARRAY SEL UDINT_TO_LREAL

BYTE_TO_LREAL INT_TO_SINT LWORD_TO_BYTE SHL UDINT_TO_LWORD

BYTE_TO_LWORD INT_TO_UDINT LWORD_TO_DINT SHR UDINT_TO_REAL

BYTE_TO_REAL INT_TO_UINT LWORD_TO_DWORD SIN UDINT_TO_SINT

BYTE_TO_SINT INT_TO_ULINT LWORD_TO_INT SINT_TO_BYTE UDINT_TO_UINT

BYTE_TO_UDINT INT_TO_USINT LWORD_TO_LINT SINT_TO_DINT UDINT_TO_ULINT

BYTE_TO_UINT INT_TO_WORD LWORD_TO_LREAL SINT_TO_DWORD UDINT_TO_USINT

BYTE_TO_ULINT LEFT LWORD_TO_REAL SINT_TO_INT UDINT_TO_WORD

BYTE_TO_USINT LEN LWORD_TO_SINT SINT_TO_LINT UINT_TO_BYTE

BYTE_TO_WORD LIMIT LWORD_TO_UDINT SINT_TO_LREAL UINT_TO_DINT

CONCAT LINT_TO_BYTE LWORD_TO_UINT SINT_TO_LWORD UINT_TO_DWORD

DELETE LINT_TO_DINT LWORD_TO_ULINT SINT_TO_REAL UINT_TO_INT

DINT_TO_BYTE LINT_TO_DWORD LWORD_TO_USINT SINT_TO_UDINT UINT_TO_LINT

DINT_TO_DWORD LINT_TO_INT LWORD_TO_WORD SINT_TO_UINT UINT_TO_LREAL

DINT_TO_INT LINT_TO_LREAL MAX SINT_TO_ULINT UINT_TO_LWORD

DINT_TO_LINT LINT_TO_LWORD MID SINT_TO_USINT UINT_TO_REAL

DINT_TO_LREAL LINT_TO_REAL MIN SINT_TO_WORD UINT_TO_SINT

DINT_TO_LWORD LINT_TO_SINT MSB_DINT_TO_ARRAY TO_LSB_DINT UINT_TO_UDINT

DINT_TO_REAL LINT_TO_UDINT MSB_DWORD_TO_ARRAY TO_LSB_DWORD UINT_TO_ULINT

DINT_TO_SINT LINT_TO_UINT MSB_INT_TO_ARRAY TO_LSB_INT UINT_TO_USINT

DINT_TO_UDINT LINT_TO_ULINT MSB_LINT_TO_ARRAY TO_LSB_LINT UINT_TO_WORD

DINT_TO_ULINT LINT_TO_USINT MSB_LREAL_TO_ARRAY TO_LSB_LREAL ULINT_TO_BYTE

DINT_TO_USINT LINT_TO_WORD MSB_LWORD_TO_ARRAY TO_LSB_LWORD ULINT_TO_DINT

DINT_TO_DWORD LREAL_TO_BYTE MSB_REAL_TO_ARRAY TO_LSB_REAL ULINT_TO_DWORD

DWORD_TO_BYTE LREAL_TO_DINT MSB_UDINT_TO_ARRAY TO_LSB_UDINT ULINT_TO_INT

DWORD_TO_DINT LREAL_TO_DWORD MSB_UINT_TO_ARRAY TO_LSB_UINT ULINT_TO_LINT

DWORD_TO_INT LREAL_TO_INT MSB_ULINT_TO_ARRAY TO_LSB_ULINT ULINT_TO_LREAL

DWORD_TO_LINT LREAL_TO_LINT MSB_WORD_TO_ARRAY TO_LSB_WORD ULINT_TO_LWORD

DWORD_TO_LREAL LREAL_TO_LWORD MUX TO_MSB_DINT ULINT_TO_REAL

DWORD_TO_LWORD LREAL_TO_SINT REAL_TO_BYTE TO_MSB_DWORD ULINT_TO_SINT

DWORD_TO_REAL LREAL_TO_UDINT REAL_TO_DINT TO_MSB_INT ULINT_TO_UDINT

DWORD_TO_SINT LREAL_TO_UINT REAL_TO_DWORD TO_MSB_LINT ULINT_TO_UINT

DWORD_TO_UDINT LREAL_TO_ULINT REAL_TO_INT TO_MSB_LREAL ULINT_TO_USINT

DWORD_TO_UINT LREAL_TO_USINT REAL_TO_LINT TO_MSB_LWORD ULINT_TO_WORD

DWORD_TO_ULINT LREAL_TO_WORD REAL_TO_LWORD TO_MSB_REAL USINT_TO_BYTE

DWORD_TO_USINT LSB_DINT_TO_ARRAY REAL_TO_SINT TO_MSB_UDINT USINT_TO_DINT

DWORD_TO_WORD LSB_DWORD_TO_ARRAY REAL_TO_UDINT TO_MSB_UINT USINT_TO_DWORD

FIND LSB_INT_TO_ARRAY REAL_TO_UINT TO_MSB_ULINT USINT_TO_INT

INSERT LSB_LINT_TO_ARRAY REAL_TO_ULINT TO_MSB_WORD USINT_TO_LINT

INT_TO_BYTE LSB_LREAL_TO_ARRAY REAL_TO_USINT TRUNC USINT_TO_LREAL

INT_TO_DINT LSB_LWORD_TO_ARRAY REAL_TO_WORD UDINT_TO_BYTE USINT_TO_LWORD

INT_TO_DWORD LSB_REAL_TO_ARRAY REPLACE UDINT_TO_DINT USINT_TO_REAL

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 350

Function Function Function Function
USINT_TO_SINT WORD_TO_BYTE WORD_TO_LREAL WORD_TO_UINT

USINT_TO_UDINT WORD_TO_DINT WORD_TO_LWORD WORD_TO_ULINT

USINT_TO_UINT WORD_TO_DWORD WORD_TO_REAL WORD_TO_USINT

USINT_TO_ULINT WORD_TO_INT WORD_TO_SINT

USINT_TO_WORD WORD_TO_LINT WORD_TO_UDINT

 Other functions such as EZ_EEPromRead, EZ_EEPromReadArray, EZ_EEPromWrite, EZ_EEPromWriteArray,
 EZ_FormatString, EZ_TimeDateCalenderToUnix and EZ_TimeDateUnixToCalendar functions may be listed in the
 Std Function List tab because they are supported on all P-Series PLC on a Chip targets. They are
 covered in detail in Appendix B - Target Specific ST Function Reference of this manual. Standard
 structured text functions are covered in detial in Appendix C - Standard ST Function Reference.

Constructs & Statements

Figure 26-15 lists the supported EZ LADDER Toolkit’s Structured Text constructs and statements.

Construct / Statement Structure
IF...THEN / ELSIF...THEN / ELSE IF_statement ::=

‘IF’ expression ‘THEN’ statement_list
 {‘ELSIF’ expression ‘THEN’ statement_list}
 [‘ELSE’ statement_list]
‘END_IF’

CASE...OF / ELSE CASE_statement ::=
‘CASE’ expression ‘OF’
 case_element
 {case_element}
 [‘ELSE’ statement_list]
‘END_CASE’

FOR / WHILE / REPEAT / EXIT FOR_statement ::=
‘FOR’ control_variable ‘:=’ for_list ‘DO’ statement_list ‘END_FOR’
control_variable ::= identifier
FOR_LIST ::= expression ‘TO’ expression [‘BY’ expression]

WHILE_statement ::= ‘WHILE’ expression ‘DO’ statement_list ‘END_WHILE’

REPEAT_statement ::=
‘REPEAT’ statement_list ‘UNTIL’ expression ‘END_REPEAT’

EXIT_statement ::= ‘EXIT’

Structured Text Function Blocks
EZ LADDER Toolkit provides two types of function blocks that use structured text: ST_FUNC and ST_FUN_
BLK. These two function blocks are similar is some ways but different in others.

These blocks may be callable; referring to the function blocks may be inserted into a ladder diagram project
and the ladder diagram call or cause the structured text to operate inside the function block based on the
inputs to the block. Certain rules must be followed for a function block (either ST_FUNC or ST_FUNC_BLK)
may be used as a callable function (block).

Figure 26-14

Figure 26-15

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 351

 ST_FUNC Function (Function Block)

The ST_FUNC function block is used to place a ST User-Defined function into a ladder diagram. When the
ST_FUNC function block is placed, a drop-down menu is used to select the functions from the User-Defined
Functions (created by you in the ST Editor).

To place a ST_FUNC, use the drop-down function block menu in the toolbar just as any other ladder function
/ function block. Select ST_FUNC and click to place it in the ladder where it is required.

 Structured text user-defined functions differ from function blocks. When a function’s instance is
 called, it executes and internal variables are used only for that instance and call. Variable values
 are not kept from one execution (or scan) to another while function blocks pass their variables from
 one execution (scan) to another making them ideal when variables would need to be passed from
 scan to scan such as a count.

For a user-defined function to be usable as a callable function (inserted in the ladder diagram), it must meet
the following criteria:

• Return Type must be a BOOL.
• May only contain input/output variable declarations: VAR_INPUT, VAR_OUTPUT
• Variable Input/Output types may only be BOOL, DINT or REAL. Internal variables may be any sup-

ported type.

ST_FUNC_BLK Function Block

The ST_FUNC_BLK function block is used to place a ST User-Defined functionblock into a ladder diagram.
When the ST_FUNC_BLK function block is placed, a drop-down menu is used to select the functionblocks
from the User-Defined Functionblocks (created by you in the ST Editor).

To place a ST_FUNC_BLK, use the drop-down function block menu in the toolbar just as any other ladder
function / function block. Select ST_FUNC_BLK and click to place it in the ladder where it is required.

 Structured text user-defined functions differ from function blocks. When a function’s instance is
 called, it executes and internal variables are used only for that instance and call. Variable values
 are not kept from one execution (or scan) to another while function blocks pass their variables from
 one execution (scan) to another making them ideal when variables would need to be passed from
 scan to scan such as a count.

For a user-defined functionblock to be usable as a callable function (inserted in the ladder diagram), it must
meet the following criteria:

• First Output type must be a BOOL.
• May only contain input / output variable declarations: VAR_INPUT, VAR_OUTPUT, VAR, VAR_EX-

TERNAL, VAR_TEMP
• Variable Input/Output types may only be BOOL, DINT or REAL. Internal variables may be any sup-

ported type.

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 352

Target Specific ST Functions
Target specific ST Functions refers to functions in addition to the standard functions listed earlier that are
required interact with specific features on the actual hardware target, such as Uarts, SPI ports, etc. These
functions are provided by Divelbiss Corporation as part of EZ LADDER Toolkit and cannot be edited, deleted
or added to except by Divelbiss. Refer to Appendix B - Target Specific ST Function Reference for details
on implementing and using target specific functions.

 All Target Specific ST function names begin with EZ_. This is an easy way to identify a target specific
 ST functions by name alone. For target specific functions to be listed in the Target Specific ST tab,
 the devices that functions would access must be installed in the Project...Settings first (Ethernet,
 UART, etc).

 Other functions such as EZ_EEPromRead, EZ_EEPromReadArray, EZ_EEPromWrite, EZ_EEPromWriteArray,
 EZ_FormatString, EZ_TimeDateCalenderToUnix and EZ_TimeDateUnixToCalendar functions may be listed in the
 Std Function List tab because they are supported on all P-Series PLC on a Chip targets. They are
 covered in detail in Appendix B - Target Specific ST Function Reference of this manual. Standard
 structured text functions are covered in detial in Appendix C - Standard ST Function Reference.

File Descriptors
Many of the target specific functions require a File Descriptor that acts as a device locator that the structured
text uses to locate the specific resource. They listed in the table as FD_x. For example, to use the EZ_EE-
PromReadArray, you must have the file descriptor for the actual EEPROM that is the device to read from.

The file descriptors for devices may be found in the Structured Text Editor. Click the Variables tab at the bot-
tom left. All devices listed under FD_ are actual file descriptors. Refer to Figure 26-16. With an open function
block to edit, double-clicking on any variable including file descriptors (FD_) will insert the it into the cursors
location in the function block.

 Only devices installed in the Project Settings will appear. If the device does not appear, check the
 Project Settings and install the device.

Figure 26-16
Variables Tab

File Descriptor List

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 353

EZ LADDER Structured Text Editor
To create structured text functions and functionblocks, EZ LADDER Toolkit has a built-in editor. To open the
ST Editor, click the edit st functions button located on the toolbar. Refer to Figure 26-17.

The ST Editor window (labeled Function Editor) will open It has it’s own menu and is divided into three dis-
tinct sections: Function List Pane, Function Pane and Output Pane. Each pane has it’s own purpose. Refer
to Figure 26-18.

Function List Pane
The function list pane lists the functions and function blocks by type. Four tabs are located at the bottom of
the pane. The first tab is for Standard functions such as ASIN and LIMIT. The second tab is for Target Spe-
cific functions (as previously mentioned). Only the target specific functions listed in this tab are available
to your selected hardware target. The third tab list the variables. The variables listed are the variable file
descriptors for accessing specific target hardware (and ladder diagram variables) from structured text. The
fourth tab is for User-Declarations functions. This tab will hold any functions or function blocks that you have
created. Selecting the tab changes the contents for the pane. Figure 26-19 is a sample of each tab contents.

Figure 26-17

Click to Open ST Editor

Figure 26-18

Function List Pane Function Pane

Output Pane

Menu

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 354

 Target specific functions will only appear in the second tab if the feature is supported on the
 hardware target and has been installed in the Project Settings. If the expected target specific function
 is not listed, check the availability of the feature in the hardware and/or verify it is installed in the
 Project Settings. Refer to Chapter 4 - Configuring Targets and other specific chapters based on
 features required for installation in the Project Settings.

 When creating and editing User-Defined functions, placing the cursor at a location in the function
 pane and then double-clicking a Standard function, Target Specific function or variable in the
 functions pane will place the item in your user-defined function.

In the User-Declaration tab, the user defined declarations, variables, functions and function blocks are
sorted by type. Expanding the type will list any defined items. In Figure 26-19, the Function Block type is
expanded showing three user-defined function blocks have been created.

The function pane is the area that user-defined functions and function blocks structured text code is edited.
When a user-defined function is open, the window will act as a text editing window. The structured text code
is entered and manipulated as in any other text editor. Figure 26-20 is a sample of the function pane with an
open function block.

 The function pane colors text based on what is detected. In Figure 26-20, constructs and statements
 are colored blue, variable types are colored red, comments are colored green and standard text is
 colored black. This coloring is automatic.

Figure 26-19

Figure 26-20

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 355

 After a function has been changed in any way, is must be verified and saved before it may be
 used. See the User-Defined Functions and Function blocks section of this chapter.

Output Pane

The Output Pane is where important messages and status about the open structured text user-defined func-
tions and function blocks are listed including when any function or function block is verified for proper syntax
and content. Figure 26-21 is an example of a function block that has failed verification with an error. This
error would need to be corrected before the function block can be used. Note, the location (line and column)
are shown in the lower right hand corner identifying the location where the error was detected.

 The detected error line and column may be approximate as the verify may detect the error on the
 next line or column after the actual error occurs. The detection depends on the ST functions and
 commands being used as to how the error may be detected. Double-clicking the error in the Output
 window will place the cursor at the location that the error is detected.

User-Defined Functions & Function Blocks
As previously discussed, custom structured text functionality is added using user-defined functions or func-
tion blocks. These functions (blocks) can be called from other ST functions (blocks) or from the ladder
diagram. Restrictions apply depending how the user-defined function (block) is to be called. See earlier sec-
tions of this chapter.

Creating a New User-defined Function or Function Block

1. To create a new user-defined function or function block, open the ST Editor using the edit st functions
button. The ST Editor will open.

2. Click the User-Declarations tab to view the user-defined items.
3. Single Click to highlight the Functionblock (or Function) heading in the User-Declarations tab.
4. Right click and select the ADD from the menu.
5. A new function block will be created and opened in the Function Pane. This function block will have all

minimal requirements including the function block beginning and ending code required. This function
block can be edited and added to as required.

 To quickly add a standard function, Target-specific function or variable to the function (function
 block), place the cursor as the desired insertion point in the function (function block); click the
 appropriate tab and double-click the desired function to add. The item is added into the location
 selected in the user-defined function (function block).

Figure 26-21

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 356

The next step with your code added is to verify the user-defined function (function block). In the ST Editor
window, click the Verify item from the menu. In the Output Pane, either an error message will be seen or the
Verify Passed will be seen. If an error message is shown, the error must be corrected before proceeding. If
the Verify Passed is shown, it is time to save the function (function block).

 An unverified function or function block may be saved without verification but it will not be usable
 until it is verified and will not show in drop down menu to call the function or function block from the
 ladder diagram.

To save the user-defined function or function block, using the ST Editor menu, click the File...then Save op-
tion. The function or function block is now saved.

Editing an Existing User-defined Function or Function Block

1. To edit a new user-defined function or function block, open the ST Editor using the edit st functions
button. The ST Editor will open.

2. Click the User-Declarations tab to view the user-defined items.
3. Single Click to expand the FunctionBlock (or Function) heading in the User-Declarations tab.
4. Double-click the desired function or function block to edit.
5. The function block (or function) will be opened in the Function Pane. This function can be edited by

adding to or removing structured text as required.

 To quickly add a standard function, Target-specific function or variable to the function (function
 block), place the cursor as the desired insertion point in the function (function block); click the
 appropriate tab and double-click the desired function to add. The item is added into the location
 selected in the user-defined function (function block).

The next step with your code added is to verify the user-defined function (function block). In the ST Editor
window, click the Verify item from the menu. In the Output Pane, either an error message will be seen or the
Verify Passed will be seen. If an error message is shown, the error must be corrected before proceeding. If
the Verify Passed is shown, it is time to save the function (function block).

 An unverified function or function block may be saved without verification but it will not be usable
 until it is verified and will not show in drop down menu to call the function or function block from the
 ladder diagram.

 When verifying functions and function blocks, any function or function block with an error will be
 identified and displayed in the Output window. Ensure you are looking at the correct function
 or functionblock based on the name when finding errors.

To save the user-defined function or function block, using the ST Editor menu, click the File...then Save op-
tion. The function or function block is now saved.

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 357

Copying / Pasting ST Functions & Function Blocks
To use EZ LADDER Toolkit Structured Text functions and function blocks in multiple EZ LADDER programs,
the structured text functions must be copied from the source ladder diagram to the target ladder diagram
or exported from the source program and imported into the target ladder diagram. Functions and function
blocks created in EZ LADDER Toolkit are specific to the ladder diagram in which they are created.

 Copying / Pasting the ladder diagram inserted function block (ladder diagram symbol of a structured
 text function block) will not properly copy the structured text function block correctly. All copy / paste
 actions must be completed as structured text source using the ST Editor. Failure to use the correct
 copy and paste method will result in Compile Errors.

To Copy / Paste a structured text function or function block:

1. Open the source ladder diagram program and the target ladder diagram program in EZ LADDER Toolkit.

2. With the source ladder diagram window selected (use the Window menu on the tool bar), click the edit st
functions button (located next to the Insert Function drop-down menu on the tool bar) to open the Structured
Text Editor.

3. Click the User Defined Functions tab (see Figure 26-22) to view the list of user defined functions and
function blocks. Select the function / function block to copy. You may need to expand the Function or Func-
tionBlock heading.

Figure 26-22

User Defined Functions tab

Select Function

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 358

4. Double-click the selected function / function block to open the function / function block source code. In
the source code window, select all (highlight) the text in the window. Verify all the text is selected (including
text that is below the current viewable window without scrolling). Refer to Figure 26-23.

5. Use CTRL-C or the menu and select Edit...Copy. The function block source code is now stored in the
Windows scratchpad. Close the Structured Text Editor.

6. Select the target ladder diagram (use the Window menu on the tool bar), click the edit st functions button
(located next to the Insert Function drop-down menu on the tool bar) to open the Structured Text Editor.

7. Click the User Defined Functions tab as before to view the list of user defined functions and function
blocks. Select the appropriate type (function or function block) and right-click and select Add. Refer to Fig-
ure 26-24. A new function / function block will be created.

Figure 26-23

Figure 26-24

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 359

8. The new function has the basics required for a new function and is named FunctionBlockx by default. Se-
lect all (highlight) the text in the window. Verify all the text is selected (including text that is below the current
viewable window without scrolling).

9. Use CTRL-V or the menu and select Edit...Paste. The function block source will be over-written by the
contents in the Windows scratchpad. Refer to Figure 26-25.

10. Note the function code (text) has been pasted, but the function block name in the left pane is still Func-
tionBlockx. The name will not update in this pane until the code has been verified. Click Verify from the top
menu of the editor. The code should verify and be identical if the entire function block was copied / pasted
correctly. The name in the left pane is now the same as the source program would list.

11. Use the File..Save to save the function block. Close the ST Function Editor. The function / function block
can now be inserted into the ladder diagram using the ST_FUNC or ST_FUNC_BLK functions listed in the
Insert Function drop-down menu.

Exporting / Importing ST Functions & Function Blocks
To use EZ LADDER Toolkit Structured Text functions and function blocks in multiple EZ LADDER programs,
the structured text functions must be copied from the source ladder diagram to the target ladder diagram
or exported from the source program and imported into the target ladder diagram. Functions and function
blocks created in EZ LADDER Toolkit are specific to the ladder diagram in which they are created.

Figure 26-25

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 360

 Copying / Pasting the ladder diagram inserted function block (ladder diagram symbol of a structured
 text function block) will not properly copy the structured text function block correctly. All copy / paste
 actions must be completed as structured text source using the ST Editor. Failure to use the correct
 copy and paste method will result in Compile Errors.

Exporting ST Functions / Function Blocks

To Export a structured text function or function block:

1. Open the source ladder diagram program in EZ LADDER Toolkit.

2. Click the edit st functions button (located next to the Insert Function drop-down menu on the tool bar) to
open the Structured Text Editor.

3. Click the User Defined Functions tab (see Figure 26-26) to view the list of user defined functions and
function blocks. Select the function / function block to export. You may need to expand the Function or Func-
tionBlock heading.

4. Double-click the selected function / function block to open the function / function block source code. Use
the File...Export menu to export the currently opened function/function block. The function / function block
will be stored as a text (.txt) file. Using the Save As window, locate the location to save the file and enter a
name of the file. Click the save button. Refer to Figure 26-27. The structured text function / function block
source code is now saved as a text (.txt) file.

Figure 26-26

User Defined Functions tab

Select Function

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 361

Figure 26-27

Importing ST Functions / Function Blocks

To Import a structured text function or function block:

1. Open the target ladder diagram program in EZ LADDER Toolkit.

2. Click the edit st functions button (located next to the Insert Function drop-down menu on the tool bar) to
open the Structured Text Editor.

3. Click the User Defined Functions tab (see Figure 26-28) to view the list of user defined functions and
function blocks. Select the type to import (function / function block). Right click and click Add. A new func-
tion block will be created with the default name FunctionBlockx.

4. The new function has the basics required for a new function and is named FunctionBlockx by default. Use
the File...Import menu to select and import a saved function / functionblock. Using the Open window, select
a saved structured text function or function block that has been exported (text file, .txt) and click the open
button.

Figure 26-28

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 362

5. The saved function / function block source code will now overwrite the contents of the FunctionBlockx
code window. Note the function code (text) has been updated, but the function block name in the left pane is
still FunctionBlockx. The name will not update in this pane until the code has been verified. Click Verify from
the top menu of the editor. The code should verify and be identical if the entire function block was exported
/ imported correctly. The name in the left pane is now the same as the function / function block code window
name.

11. Use the File..Save to save the function block. Close the ST Function Editor. The function / function block
can now be insterted into the ladder diagram using the ST_FUNC or ST_FUNC_BLK functions listed in the
Insert Function drop-down menu.

Viewing Structured Text Variables in Run Mode
The variable types supported in the ladder diagram (can be seen as variables in the actual ladder diagram)
are limited to DINT, BOOL and REAL; but there are many other types of variables supported in structured
text as shown earlier that may need to be monitored when running and debugging programs. These vari-
ables (as well as the DINT, BOOL and REAL) may be viewed in the RUN mode (real time) using the Watch-
list in EZ LADDER Toolkit.

The watch appears at the bottom of the screen when EZ LADDER Toolkit is in the RUN mode (See Figure
26-29).

To view variables of a structured text function block placed in the ladder diagram, hover over the ST function
block and right-click. A small optional pop-up will open with Add to Watchlist. Click on Add to Watchlist.
See Figure 26-30. The function block will now be added to the Watchlist window.

 For the Watchlist (and adding to to work correctly), the program in EZ LADDER Toolkit must be
 compiled and running on the actual hardware trget (RUN Mode).

Figure 26-29

Watchlist
Viewing Area

Chapter 26 Structured Text

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 363

Figure 26-30

Clicking the little expand arrow next to the function block name in the Watchlist expands the function block
and shows the variables, types and their values.

 If the Type shows as invalid, verify the program has been compiled and downloaded to the target. All
 related files for the watchlist are created when the COMPILE process is done.

 Variables for function blocks are viewed as shown above, but ST Global variables must be viewed
 differently. The browse button allows for some direct viewing of variables in the ladder and GLOBAL
 variables in structured text.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 364

CHAPTER 27
Cellular Connectivity

This chapter provides information on implementing and using hardware target supported
Cellular data modems and connectivity.

Chapter Contents
Cellular Data Modem (CDM) Overview ..365

CDM Installation - Project Settings ..365

Cellular Data Modem (CDM) Activation ...365

Controlling the Cellular Data Modem ..366
General CDM Control Flow Chart ..366
Cellular Modem Power Control ..369
Cellular Modem Signal Level ..369
Cellular Modem Activation / Deactivation ...369
Connect to Cellular Network ..370
Cellular Data Modem Status ...370
Cellular Data Modem Registration ...370
Retrieving Modem / Connection Information ..371

The Cellular Data Modem and VersaCloud M2M+IoT371

Chapter 27 Cellular Connectivity

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 365

Cellular Data Modem (CDM) Overview
P-Series PLC on a Chip based targets (model dependent) support a cellular data modem and cellular
data connectivity. The cellular data modem and connectivity are design to interface directly to VersaCloud
M2M+IoT Solutions or to Divelbiss customized data solutions.

 Products that support cellular data modem (CDM) are shipped with the data modem pre-installed at
 the unit or expansion board level. These products may support multiple cellular data modem types
 and networks, but are all factory installed only. The typical installation CDM is a 4G cellular data
 modem.

CDM Installation - Project Settings
P-Series PLC on a Chip based targets (model dependent) support a cellular data modem and cellular
data connectivity. The cellular data modem and connectivity are design to interface directly to VersaCloud
M2M+IoT solutions or to Divelbiss customized data solutions.

Before the CDM may be used in the ladder diagram / structured text, it must be installed in the ladder dia-
gram Project Settings.

 The following is the software requirements for installing CDM support for the target. Refer to the
 product’s User Manual for details on installation of cellular data model (CDM) hardware and target
 Project Settings. For standard products, the cellular data model software support may
 automatically installed when the target is selected (or the target’s cellular expansion board hardware
 option is selected in the Project Settings; therefore, no additional software configuration may be
 required.

 PLC on a Chip integrated circuits and modules require additional setup before the cellular data
 modem (CDM) option may be used. Only cellular data modems provided by Divelbiss Corporation
 are supported in EZ LADDER Toolkit. Contact Divelbiss for purchasing cellular data modems,
 requirements for interfacing to PLC on a Chip and EZ LADDER target Project Settings
 configurations.

Cellular Data Modem (CDM) Activation
 The cellular data modem (CDM) supports multiple technologies and networks and requires either
 a Divelbiss Telematics contract which includes cellular data or you must provide your own SIM card
 and cellular data plan.

 Technical Support for non-Divelbiss telematics (your own SIM card and plan) is a billable item is not
 covered under standard support. Divelbiss telematics plans include cellular technical support.

All products that support the Divelbiss cellular data modem (CDM) feature require an active SIM card to
the cellular (carrier) network before they can be used. Current CDM products use 4G data modems and an
activated SIM card for the carrier must be installed in the CDM. The SIM card / telematics plan may be pur-
chased from Divelbiss or self provided. Technical support for cellular connection / modems is only provided
at no charge for Divelbiss telematics and supplied SIM card plans.

Chapter 27 Cellular Connectivity

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 366

As each cellular data modem, technologies and coverage areas may have different activation
needs, refer to additional documentation provided with the cellular data modem (CDM) or con-
tact Divelbiss Corporation for activation steps.

Controlling the Cellular Data Modem
The cellular data modem is access and controlled as an interface using structured text and target specific
structured text functions.

These functions include:

 EZ_Cell_ApplyPower EZ_Cell_Connect EZ_Cell_GetICCID
 EZ_Cell_GetIIMEI EZ_Cell_GetIPV4Addr EZ_Cell_GetModelName
 EZ_Cell_GetRegistration EZ_Cell_GetSignalStrength EZ_Cell_GetState

Each function is described and covered in detail in Appendix B - Target Specific ST Function Reference.

General CDM Control Flow Chart

The flow chart provided is a general approach to the steps required to access and use the cellular data mo-
dem for communications. It is provided as a generic example and application requirements may dictate other
or additional steps. CDM represents the cellular data modem in the flow chart.

The Flow chart shown is for general reference only. Care must be taken to monitor the state of the
cellular data modem, the signal strength and other parameters in the application with enough fre-
quency to detect connection issues.

Additionally, the flow chart shows only very basic error detection. Additonal error detection within
the cellular modem control and the interaction to the MQTT function blocks in the ladder diagram is
required as well as properly handling all shown and unknown potential errors according to the needs
and requirements of the end application.

It is the responsibility of the application developer to properly control the cellular data modem, iden-
tify and handle all errors that may be encountered. Failure to do so may result in loss of communica-
tions, failure to make a connection and other data loss.

Items such as signal strength is dependent upon available cellular network coverage and actual ap-
plication requirements for acceptable levels.

Chapter 27 Cellular Connectivity

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 367

Power Up
CDM

Check CDM
Status

Use EZ_Cell_ApplyPower structured
text function

Use EZ_Cell_Get-
State structured
text function

Is CDM
State Idle?

(2)

Y

N

Use EZ_Cell_GetSignalStrength
structured text functionCheck CDM

Signal Strength

Is CDM
Signal

Strength
Good?

Y

N Set Error
Handle Error

per Application

Check CDM
Registration

Use EZ_Cell_
GetRegistration
structured text function

Is
Registration
Home (1) or
Roaming (5)

Y

N Set Error
Handle Error

per Application

CDM Connect
to Network

Use EZ_Cell_GetState
structured
text function

To Next Page

Chapter 27 Cellular Connectivity

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 368

Check CDM
Status

Use EZ_Cell_GetState
structured
text function

Is CDM
State

Connected?
(4)

Y

N
Is CDM
State

Start Connect?
(3)

Y

N
Is CDM
State
Error?

(7)

Y

N

Set Error
Handle Error

per Application
RX / TX Data

To VersaCloud

Use MQTT ladder dia-
gram function blocks

COM
Errors or
Time-outs
Detected?

Y

N
Info from ST or
ladder diagram

Set Error / Handle Error
per Application

Options may include:

• Check CDM Status
• X number of retries
• Disconnect / Reconnect CDM
• Cycle Power to CDM
• Any other Action needed for ap-

plication

From Previous Page

Chapter 27 Cellular Connectivity

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 369

 In following sections several target specific functions are referenced from a generic view only. For details of
 each specific function, refer to Appendix B - Target Specific ST Function Reference.

Cellular Modem Power Control

The hardware target (controller, gateway or device) on-board cellular data modem’s power must be con-
trolled. By default, the cellular data modem is turned off (no power). The power is controlled using the Struc-
tured Text target specific function EZ_Cell_ApplyPower.

 Before the cellular data modem can be used in any capacity, it’s power must be turned on.

 At specific times or specific conditions require such as power conservation or to hard reset the
 cellualr data mode, it may be advantageous to turn off the power to the cellular modem. When the
 cellular data modem’s power should be turned off is entirely based on the needs of an application.

Cellular Modem Signal Level

The cellular signal level may be accessed using the Structured Text target specific function EZ_Cell_Get-
SignalStrength.

 This function is only available when the cellular data modem is in the IDLE state (powered up but not
 communicating). While a connection is in use, this function is not valid. See Cellular Data Modem
 Status in this chapter.

Cellular Modem Activation / Deactivation

As discussed earlier in this chapter:

For 4G CDM (cellular data modems), the SIM card must be activated with the cellular carrier and installed
into the cellular data modem. The modem should register on first connection to the network.

 The cellular data modem will not function without an activated / registered SIM card installed.

 The cellular data modem (CDM) supports multiple technologies and networks and requires either
 a Divelbiss Telematics contract which includes cellular data or you must provide your own SIM card
 and cellular data plan.

 Technical Support for non-Divelbiss telematics (your own SIM card and plan) is a billable item is not
 covered under standard support. Divelbiss telematics plans include cellular technical support.

As each cellular data modem, technolognies and coverage areas may have different activa-
tion needs, refer to additional documentation provided with the cellular data modem (CDM) or
contact Divelbiss Corporation for activation steps.

Chapter 27 Cellular Connectivity

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 370

Connect to Cellular Network

The connection to the cellular network is handled using the Structured Text target specific function EZ_Cell_
Connect. This function causes the cellular modem to make a connection or to dis-connect from the cellular
networks. This function can only be called to make a connection when the cellular data modem is in the
IDLE state. The function can be called to disconnect the cellular data modem at any time (or any state).

 The cellular data modem status must be IDLE to make a connection. See Cellular Data Modem
 Status in this chapter.

 The cellular data modem registration must be REGISTERED HOME or REGISTERED ROAMING
 to make a connection. See Cellular Data Modem Registration in this chapter.

Cellular Data Modem Status

The current status of the cellular data modem can be accessed using the Structured Text target specific
function EZ_Cell_GetState. This function queries the on-board cellular data modem and returns a status
code based on the current modem state.

The return states are:

 0 Off
 1 Powering Up
 2 Idle
 3 Starting Connection
 4 Connected
 5 Stopping Connection
 6 Activating
 7 Error

Cellular Data Modem Registration

The current status of the cellular data modem registration (availability of connecting to a cellular network)
can be accessed using the Structured Text target specific function EZ_Cell_GetRegistration. This function
queries the on-board cellular data modem and returns a status code based on the current registration state.

The return states are:

 0 Not Registered
 1 Registered Home
 2 Not Registered - Searching
 3 Registration Denied
 4 Unknown
 5 Registered Roaming

Chapter 27 Cellular Connectivity

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 371

The Cellular Data Modem and VersaCloud M2M+IoT
The cellular data modem must have an active SIM Card and controlled using structured text. As it is con-
trolled using structured text, it may accessed for VersaCloud M2M+IoT communication as a device using the
MQTT_Connect, MQTT_Publish and MQTT_Recieve functions (ladder diagram function) and other struc-
tured text commands. Refer to Appendix A - Function Reference as the VCLOUD function is covered in
detail. Refer to Chapter 26 - Structured Text and Appendix B - Target Specific ST Function Reference
for details on using structured text.

Using the MQTT_Connect, MQTT_Publish and MQTT_Recieve functions, structured text and selecting the
cellular device as the communication method allows for transmitting and receiving variable data to/from the
VersaCloud M2M+IoT Solutions.

 The cellular data modem must be controlled using Structured Text and target specific functions
 before the MQTT function blocks or othe structured text functions may be used to communicate.
 Failure to properly control the cellular data modem will result in communications failure or loss.

Retrieving Modem / Connection Information

Cellular Modem (Network) IP Address
The cellular data modem’s IP address can be retrieved for informational purposes using the Structured Text
target specific function EZ_Cell_GetIPV4Addr.

 The EZ_Cell_GetIPV4Addr function (and obtaining the IP address) is only valid when the cellular
 data modem (CDM) is Connected to the cellular network. See Cellular Data Modem Status in this
 chapter.

Cellular Modem IMEI
The cellular data modem’s IMEI is set and cannot be changed, but it can be retrieved for informational pur-
poses using the Structured Text target specific function EZ_Cell_GetIMEI.

Cellular Modem Model Name
The cellular data modem’s Model Name can be retrieved for informational purposes using the Structured
Text target specific function EZ_Cell_GetModelName.

Cellular Sim Card ID
The cellular data modem’s installed SIM Card ID can be retrieved for informational purposes using the
Structured Text target specific function EZ_Cell_GetICCID.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 372

CHAPTER 28
VersaCloud M2M+IoT Communications

This chapter provides information on implementing and VersaCloud M2M+IoT communi-
cations between VersaCloud M2M+IoT supported hardware targets and the VersaCloud
M2M+IoT cloud solutions. Legacy COAP communications (previously known as Versa-
Cloud M2M information is now located in Chapter 30 - COAP Communications.

Chapter Contents
VersaCloud M2M+IoT Communications Overview373

Communications using Ladder Diagram ..374
Installing VersaCloud M2M+IoT (MQTT) in Project Settings374
MQTT Function Blocks Overview ..378

VersaCloud M2M+IoT using Structured Text ..383

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 373

VersaCloud M2M+IoT Communications Overview
VersaCloud M2M+IoT from Divelbiss is an end to end, machine to machine, IoT device to cloud solution.
VersaCloud M2M+IoT solutions cover each area needed for remote control and / or monitoring of machinery
and equipment, regardless of where the equipment is located; from the factory floor to remote sites. Ver-
saCloud M2M+IoT solutions include interface hardware (PLCs and Gateways), communications links (Eth-
ernet, WI-FI and cellular data including cellular data coverage plans) and cloud portal solutions that utilize
Microsoft Azure IoT Central, IoT Hub as well as other custom cloud portal solutions.

 VersaCloud M2M+IoT Solutions use MQTT communcations between devices and cloud solutions
 and portals. The original VersaCloud M2M used COAP. COAP communications are still supported to
 custom cloud solutions. For COAP communications information, see the Chapter 30 - COAP
 Communications of this manual.

EZ LADDER programmed VersaCloud enabled products support the communications from the device to
VersaCloud M2M+IoT solution. Communications to the cloud may be handled via Ethernet, Wi-Fi or Cellular.
For each of these types of communications, the product (target) must support the communication method to
be used.

 VersaCloud M2M+IoT communications via Cellular Data Modem requires a cellular data plan
 (provided by you with SIM card or a Telematics contract and cellular plan provided by Divelbiss.
 Additional charges apply for Divelbiss cellular data plans and technical support for non-Divelbisss
 cellular data plans.

 VersaCloud M2M+IoT cloud solutions by Microsoft Azure IoT Central require account registration.
 Charges may apply based on the number of devices connected to the IoT Central portal.

For each communication method, EZ LADDER (per ladder diagram project) requires additional configuration
and setup for the communications method itself as some communication methods may be used outside of
VersaCloud M2M+IoT Portal communications. Refer to Chapter 19 - Ethernet / Wi-Fi for configuring Wi-Fi or
Chapter 27 - Cellular Connectivity for configuring the Cellular Data Modem option.

 Ethernet and Wi-Fi may be used to communicate via Modbus TCP without VersaCloud M2M+IoT
 solutions (local communications).

 Cellular data modem may only be used for communications to VersaCloud M2M+IoT cloud solutions
 or to Divelbiss developed custom cloud solutions.

 Regardless of the communications method, the product (target) must support the communication
 method to be used.

In addition to the communications method configuration, the VersaCloud M2M+IoT communications must be
configured and enabled in EZ LADDER Toolkit (per ladder diagram project) before it can be used.

 MQTT (VersaCloud M2M+IoT) requires the SNTP feature to be installed, configured and operating
 before the ladder diagram will compile successfully. The SNTP is required to sync the real time clock
 to UTC time.

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 374

Communications using Ladder Diagram
The MQTT_Connect, MQTT_Publish and MQTT_Recieve function blocks within the ladder diagram are
simple to use for communicating to and from the VersaCloud M2M+IoT cloud portal and is ideally suited for
transmitting and receiving variables quickly and easily. The VCLOUD function block supports two variable
types: REAL, BOOLEAN and INTEGER. Structured text may also be used to communicate to the Versa-
cloud M2M+IoT cloud portal and may use other variable types as well.

 Other variable types (TIMER) must be converted to either INTEGER, BOOLEAN or REAL variable
 types before they can be sent / received between the product (ladder diagram) and the VersaCloud
 M2M+IoT using the MQTT_Connect, MQTT_Publish and MQTT_Recieve function blocks.

Installing VersaCloud M2M+IoT (MQTT) in Project Settings

Before the MQTT_xxx function blocks and VersaCloud M2M+IoT communications may be used in the ladder
diagram program, it must be installed in the Project Settings (for each ladder diagram project).

 Verify the communication method is installed (Ethernet, Wi-Fi, Cellular) before proceeding. Refer to
 this manual’s individual chapters for each of the methods for instructions for installation.

1. Using the EZ LADDER Toolkit menu, select Project.....Settings. The Project Settings dialog will open.
The target should have already been pre-selected and configured and the communications method installed
previously.

2. Click the properties button. The target’s Properties dialog will open. Refer to Figure 28-1.

3. Click the add device button. The PLCHIP-PXX Devices dialog will open.

4. Find and select the MQTT option (highlight). Refer to Figure 28-2.

5. Click ok. The MQTT Properties dialog will open. This dialog is used to configure the MQTT (Versacloud

Figure 28-1 Figure 28-2

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 375

M2M+IoT) communications settings (what the MQTT function blocks use). Refer to Figure 28-3. The first
section of this dialog is divided into two panes: Selected Interfaces and Available Interfaces.

6. Select (highlight) the communications method in the Available Interfaces pane and click the add button.
The selected method will now be moved from the Available Interfaces pane to the Selected Interfaces
pane. Refer to Figure 28-4.

7. Set the Host of the Versacloud M2M+IoT solution using the drop down. The common would Azure IoT
 Central.

8. Depending upon the Host selected, some fields will change or will require additional configuration
 information.

 Azure Iot Central

 a. The Server name is pre-set for Azure IoT Central by Divelbiss. The server port number is set
 automatically and uses TLS

 b. Server Certificate tab. Refer to Figure 28-5A.
 1. The Baltimer Cyber Trust Root certificate is selected by default.

 2. If it is un-checked, a different certificate may be entered in the provided field.

 3. The Disable Server Certificate check box allows for disabling part of the certificate security
 check. This option save some ladder diagram RAM space.

 c. The Authentication tab requires additional configuration. Refer to Figure 28-5B.

 1. The Device ID is by default configured to Use Serial Number. This can be changed if
 required using the check box and adding an EEPROM location and size where to find the
 ID on the device.

 2. The Password is set to Symmetric key and you must provide an EEPROM starting address

Figure 28-3 Figure 28-4

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 376

 to store this key on the device (EEProm Addr:) The maximum size is 46 bytes)
 3. ID Scope: This field is provided by the Azure IoT Central portal. It will be stored in
 EEPROM also.

 You can enter any value temporarily, but it must have the actual ID Scope from Azure IoT
 Central before any communcations can be established.

 4. The Token Lifetime is set by default to 24 hours. This value can be changed any desired
 hours or minutes. This is the time limit for an active MQTT connection to time-out and
 automatically close the connection (required by Azure IoT Central). The connection will
 close and then re-connect automatically. This only applies if the MQTT connection has
 been connected for the entire duration with no disconnects.

 d. Options Tab. Refer to Figure 28-5C.
 1. Allows for adjusting the Number of buffered MQTT Messages. The default
 is set to 3.

 Azure Iot Hub

 a. The Server (Name or IP address) must be entered for the Azure IoT Hub. This address / name is
 custom per each application. 1. The server port number is set automatically and uses TLS

 b. Server Certificate tab. Refer to Figure 28-6A.
 1. The Baltimer Cyber Trust Root certificate is selected by default.

 2. If it is un-checked, a different certificate may be entered in the provided field.

 3. The Disable Server Certificate check box allows for disabling part of the certificate security
 check. This option save some ladder diagram RAM space.

 c. The Authentication tab requires additional configuration. Refer to Figure 28-6B.
 1. The Device ID is by default configured to Use Serial Number. This can be changed if
 required using the check box and adding an EEPROM location and size where to find the
 ID on the device.
 2. The Password is set to Symmetric key and you must provide an EEPROM starting address

Figure 28-5A Figure 28-5B Figure 28-5C

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 377

 to store this key on the device (EEProm Addr:) The maximum size is 46 bytes)

 3. The Token Lifetime is set by default to 24 hours. This value can be changed any desired
 hours or minutes. This is the time limit for an active MQTT connection to time-out and
 automatically close the connection (required by Azure IoT Central). The connection will
 close and then re-connect automatically. This only applies if the MQTT connection has
 been connected for the entire duration with no disconnects.

 d. Options Tab. Refer to Figure 28-6C.
 1. Allows for adjusting the Number of buffered MQTT Messages. The default
 is set to 3.

 Exosite - Murano

 a. The Server (Name or IP address) must be entered for the Exosite-Murano portal. This address /
 name is custom per each application. The server port number is set automatically and uses TLS

 b. Server Certificate tab. Refer to Figure 28-7A.
 1. The Use Exosite Root CA is selected by default.

 2. The option to select Use DigiCert Global Root CA is available.

 3. Unchecking both boxes, allows for entering / selecting a different security certificate to
 use in the provided field.

 3. The Disable Server Certificate check box allows for disabling part of the certificate security
 check. This option save some ladder diagram RAM space.

 c. The Authentication tab requires additional configuration. Refer to Figure 28-7B.
 1. The Client ID is by default configured to Use Serial Number. This can be changed if
 required using the check box and adding an EEPROM location and size where to find the
 ID on the device.

 2. The Username is by default configured to Use Serial Number. This can be changed if
 required using the check box and adding an EEPROM location and size where to find the
 Username on the device.

Figure 28-6A Figure 28-6B Figure 28-6C

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 378

 3. Password is set to Token. This cannot be changed.

 d. Options Tab. Refer to Figure 28-7C.
 1. Allows for adjusting the Number of buffered MQTT Messages. The default
 is set to 3.

9. Click the ok button. The MQTT Properties dialog will close returning to the target’s Properties dialog.

10. Click the ok button. The Target’s Properties dialog will close returning to the Project Settings dialog.

11. Click the ok button. The Project Settings dialog will close. The MQTT Versacloud M2M+IoT communica-
tions feature is now installed in the ladder diagram project.

Be sure to save the ladder diagram project using the Save or Save As from the EZ LADDER Toolkit menu.

Custom
 This setting allows for a custom MQTT host. The settings to be entered will depend on the host used.
 Consult the Host documentation for information on possible configuration settings.

 The Use TLS checkbox is optional when using custom. When the checkbox is enabled, MQTT_TLS
 memory will be reserved and when disabled, the memory will not be reserved (more memory
 available).

MQTT Function Blocks Overview

The MQTT function blocks are inserted into the ladder diagram by selecting it from the Insert Function drop-
down menu next to the edit st functions button on the tool bar. There are 2 MQTT function blocks used
for communications to VersaCloud M2M+IoT solutions: MQTT_CONNECT and MQTT_PUBLISH.

Locate the position and click to insert the function block (as any other function block). The MQTT Function
block’s Properties dialog will open. See each function block for more details.

Figure 28-7A Figure 28-7B Figure 28-7C

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 379

MQTT _CONNECT Function Block

The MQTT_CONNECT function block opens the connection to the VersaCloud M2M+IoT cloud server (IoT
Central, IoT Hub or Exosite Murano) selected in the Project Settings.

Select the MQTT_CONNECT function block from the list and insert it into the ladder diagram. The Mqtt Con-
nect Properties dialog will open. When placing the MQTT_CONNECT function block, an optional checkbox
is provided for it to automatically try reconnecting should the connection be lost as well as a retry delay (in
seconds) between retries. Refer to Figure 28-8.

The function block operates like all other function blocks with an ENable input to trigger. When the ENable
input is true, the MQTT_CONNECT block will attempt to connect (and stay connected) to the VersaCloud
M2M+IoT cloud solution selected in the Project Settings. When the ENable input goes false, the MQTT_
CONNECT block will disconnect from the Versacloud M2M+Iot cloud solution selected in the Project Set-
tings.

The Q output is true when the EN input is true.

There are three other outputs from the MQTT_CONNECT function block for identifying the current status of
the connection. These outputs require INTEGER variables be connected to them. The variables will hold the
values output by the function block. Refer to Figure 28-9.

 ST: MQTT State of operation. The values listed identify the current state.
 1 Connecting
 2 Provisioning
 3 Provision Sent
 100 Connect Sent
 101 Connected
 200 Connect Error
 300 TLS Handshaking Failed
 301 Authentication Read Error
 302 Authentication Needs User Password
 303 Authentication Invalid User Password
 304 Authentication Not Authorized (Bad Username or Password)
 305 Connection Refused (Invalid Protocol Version)
 306 Connection Refused (Client ID Rejected)
 307 Connection Refused (Server Unavailable)

Figure 28-8

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 380

 ER: MQTT Network Errors. The values listed identify the error.
 0 No Error
 -1 Out of Memory Error
 -2 Buffer Error
 -3 Timeout Error
 -4 Reverved (Should not see)
 -5 Operation Currently in Progress
 -6 Illegal Value
 -7 Reverved (Should not see)
 -8 Address in Use
 -9 Already Connecting
 -10 Connection Already Established
 -11 Not Connected
 -12 Network Interface Error (Cellular, Ethernet, etc)
 -13 Connection Aborted
 -14 Connection Reset
 -15 Connection Closed
 -16 Illegal Argument

 Additional errors below -8192 are specific to the SSL layter. For example, -9984 is a
 Certificate failed verification (CRL, CA or signature check failed. This can be caused by the
 certificate not matching, if there is not enough free memory (RAM) in the controller or if the
 certificate date is not vaild.

 RT: The number of retries that have occurred. This number is cumulative (until target reset or
 power cycle). The larger the number, the more times the block has tried to connect to the
 selected cloud solution (some may be successful, others may not).

 If the number of retries is increasing, identifying a problem connecting (once a know good
 program and connection have been established), it may be required to reset the controller or
 target using structured text, forcing a reboot to see if the problem is corrected.

Figure 28-9

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 381

MQTT _PUBLISH Function Block

The MQTT_PUBLISH function block sends data the VersaCloud M2M+IoT cloud server (IoT Central, IoT
Hub or Exosite Murano) selected in the Project Settings.

 Before the MQTT_PUBLISH block can send data, a connection must be established to the Versa
 Cloud M2M+IoT cloud solution using the MQTT_CONNECT block.

Select the MQTT_PUBLISH function block from the list and insert it into the ladder diagram. When placing
the MQTT_PUBLISH function block, the Mqtt Publish Properties dialog will open. Refer to Figure 28-10.

Figure 28-10 Figure 28-11

Thee dialog (shown in Figure 28-10), is where variables from the ladder diagram are selected to be sent to
the Verscloud M2M+IoT cloud solution (chosen in the Project Settings).

 The variables selected / added to the MQTT_PUBLISH block should already exist, or they may be
 added in the variable add dialog when selecting the variable (See variables in the Chapter 5 -
 Ladder Diagram Projects).

 Variable types used with the MQTT_PUBLISH block include BOOLEAN, REAL and INTEGER.

Click the add variable button to add a variable to the MQTT_PUBLISH block control. Select (or add a new
variable) to use and click ok. See Figure 28-11. The variable will now be populated in the Mqtt Publish
Properies dialog.

The JSON Name will now by default be populated with the name of the variable. This JSON Name can be
edited / changed, but this JSON Name entered is the name used in the cloud portal side to map the data.
See Figure 28-12.

 The JSON Name entered in this field must match the name of the variable on the cloud portal for
 data to be sent to and received on the cloud portal side. If these names do not match, data will not
 be received on the cloud portal.

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 382

In the Topic drop down menu, select: devices/{DeviceID}/messages/events/

Click ok when all the variables have been added to send to the VersaCloud M2M+IoT cloud solution (por-
tal).

 Variables can be deleted using the delete button in the Mqtt Publish Properties dialog.

 Multiple MQTT_PUBLISH blocks may be used in a single program.

Figure 28-12

The function block operates like all other function blocks with an ENable input to trigger. The ENable input
is rising edge sensitve; so when the ENable goes from false to true, the MQTT_PUBLISH block will attempt
send data to the VersaCloud M2M+IoT cloud solution selected in the Project Settings.

 For data to send regularly, the ENable input must be controlled (toggled) low to high and back to low
 (after successful send). This can be done using a timer or other control methods.

The Q output goes true for one ladder scan (the scan the send happened on), provided there was no errors.

There is an additional output from the MQTT_PUBLISH function block for identifying any error that may have
occurred during the send. This outputs requires an INTEGER variable be connected to it. The variable will
hold the value output by the function block. Refer to Figure 28-13.

 ER: MQTT Network Errors. The values listed identify the error.
 0 No Error
 -1 Out of Memory Error
 -2 Buffer Error
 -3 Timeout Error
 -4 Reverved (Should not see)
 -5 Operation Currently in Progress
 -6 Illegal Value
 -7 Reverved (Should not see)
 -8 Address in Use
 -9 Already Connecting

Chapter 28 VersaCloud M2M+IoT Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 383

 -10 Connection Already Established
 -11 Not Connected
 -12 Network Interface Error (Cellular, Ethernet, etc)
 -13 Connection Aborted
 -14 Connection Reset
 -15 Connection Closed
 -16 Illegal Argument

 Additional errors below -8192 are specific to the SSL layter. For example, -9984 is a
 Certificate failed verification (CRL, CA or signature check failed. This can be caused by the
 certificate not matching, if there is not enough free memory (RAM) in the controller or if the
 certificate date is not vaild.

Figure 28-13

Receiving Data from VersaCloud M2M+IoT

At this time, to receive data from VersaCloud M2M+IoT solutions and portals you must use structured text.
Future addtions to EZ LADDER may provide a standard function block.

VersaCloud M2M+IoT using Structured Text
The MQTT function blocks within the ladder diagram is simple to use for communicating to the VersaCloud
M2M+IoT solutions (portals) and is ideally suited for transmitting variables quickly and easily. Communica-
tions to and receiving data from the portal and additional control features are available using structured text.

Structured text provides more flexibility in sending (such as sending strings) and receiving data (different
variable types) that is not supported using the MQTT function blocks. This greater flexibility requires that
the communications and it’s handling inside an application are written using the target specific and standard
structured text functions and requires a greater knowledge of the structured text programming language.

The following target specific structured text function blocks are used for VersaCloud M2M+IoT Portal com-
munications:

EZ_MQTT_Connect
EZ_MQTT_Publish

EZ_MQTT_Receive

For details on each of the target specific functions listed, refer to Appendix B - Target Specific ST Func-
tion Reference.

For details on using structure text, refer to Chapter 26 - Structured Text.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 384

CHAPTER 29
GPS Support

This chapter provides information on accessing and using the Global Positioning Satellite
(GPS) functions on P-Series based PLC on a Chip products using EZ LADDER Toolkit.

Chapter Contents
GPS Overview ..385

GPS Installation ...385

Using GPS ..386

Chapter 29 GPS Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 385

GPS Overview
P-Series PLC on a Chip based targets that support a GPS feature may be used to access NMEA GPS satel-
lite data including location, date/time, movement and precision.

 GPS functionality is available only on GPS enabled products and is dependent upon GPS satellite
 signal availability.

GPS functionality is supported only in Structured Text using the EZ_GPS_GetDateTimeUTC, EZ_
GPS_GetMovement, EZ_GPS_GetPosition and EZ_GPS_GetPrecision target specific functions.
These functions access and return GPS satellite information in data formats supported by structured text,
VersaCloud M2M+IoT portals, COAP communications, SD Card Data-logging, LCD Display and Serial Ports
only.

 The ladder diagram cannot access most GPS data as the data format is not supported in the ladder
 diagram.

For details regarding Structured Text, refer to Chapter 26 - Structured Text. For details on using ST func-
tions including structured text GPS functions, refer to Appendix B - Target Specific ST Function Refer-
ence.

GPS Installation
Before GPS may be used in the ladder diagram / structured text, it must be installed in the ladder diagram
Project Settings.

 The following is the software requirements for installing GPS support for the target. Refer to the
 product’s User Manual for details on installation of GPS hardware. For many standard products, the
 GPS software support is automatically installed when the target is selected (or the target’s GPS
 hardware option is selected in the Project Settings; therefore, no additional software configuration is
 required.

 PLC on a Chip integrated circuits and modules do require additional setup. Refer to the following
 steps.

1. Select the target and click the properties button. The Target Properties window will open. From the drop-
down menu (DCPN), select the model / part number of the target.

2. Several devices are required for installing the GPS on a PLC on a Chip (IC or module) target. The GPS
requires the installation in Project Setting software for options: GPS (installs under Device) and UART (in-
stalls under Bus). If these devices were already installed, they would be listed. See Figure 29-1.

3. Click the add device button. The Target’s Devices window will open. All the available devices and features
for the target are shown in the Devices section. Scroll down and select GPS and the UART (UARTx where x
represents the UART to use for the GPS communications). Figure 29-2 shows the Target’s Devices window.

4. Click the ok button. Additional windows will open. The UART must be configured for 9600, No Parity, 8
Data bits, 1 Stop bit and RS232 in the UARTx Properties dialog for Divelbiss standard GPS interface mod-
ules. The same UART must be selected in the GPS Properties dialog.

Chapter 29 GPS Support

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 386

Figure 29-1

Figure 29-2

 For other GPS modules may require different serial port (UART) settings. Refer to the GPS
 manufacturer for interface details.

Using GPS
With the GPS installed (as hardware and in the Project Settings), provided there is a good GPS satellite
signal, the GPS functions may be used to access satellite data.

GPS functionality is supported only in EZ LADDER using Structured Text with the structured text (target spe-
cific) functions EZ_GPS_GetDateTimeUTC, EZ_GPS_GetMovement, EZ_GPS_GetPosition and EZ_GPS_
GetPrecision.

 The ladder diagram cannot access most GPS data as the data format is not supported in the ladder
 diagram. Most GPS interface and decision making must be handled in structured text.

The structured text functions listed can access data received by the GPS receiver and return values that
include speed, course, satellites used, latitude,longitude, altitude, month, day, year, hours, minutes and
seconds. Additional precision parameters include Mode, VDOP, PDOP and HDOP. Refer to GPS and NMEA
definitions and standards for more details regarding these parameters. For details on using structured text,
refer to Chapter 26 - Structured Text and Appendix B - Target Specific ST Function Reference.

 The GPS structured text functions access and return GPS satellite data that can be used by
 structured text, and exported (sent) to VersaCloud M2M+IoT portals, COAP Communications, SD
 Card Data-logging, LCD Display and Serial Ports as strings directly. To export satellite data from
 structured text to the ladder diagram, data would need to be converted and formatted.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 387

CHAPTER 30
DCCoAP Communications

This chapter provides information on implementing and using DCCoAP communications
(formerly VersaCloud M2M) between supported hardware targets and the custom DC-
CoAP cloud services.

Chapter Contents
DCCoAP Communications Overview ..388

Communications using Ladder Diagram ..388
Installing DCCoAP in Project Settings ..389
Using the DCCoAP Function Block ...390
Activating the Device on a DCCoAP Cloud Server 394

DCCoAP Communications to Cloud Solutions394

Chapter 30 DCCoAP Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 388

DCCoAP Communications Overview
DCCoAP Communications from Divelbiss (formerly known as VersaCloud M2M) solutions cover each area
needed for remote control and / or monitoring of machinery and equipment, regardless of where the equip-
ment is located; from the factory floor to remote sites. DCCoAP solutions include interface hardware (PLCs
and Gateways) and communications links (Ethernet, WI-FI and cellular data including cellular data coverage
plans).

 DCCoAP communications require a custom DCCoAP cloud server solution to receive, send
 and process data. VersaCloud M2M+IoT supports only MQTT (not DCCoAP). For VersaCloud
 M2M+IoT Solutions using MQTT, see Chapter 28 - VersaCloud M2M+IoT Communications.

EZ LADDER programmed DCCoAP enabled products support the communications from the device to cus-
tom DCCoAP servers, portals (and dash boards). Communications to the DCCoAP server may be handled
via Ethernet, Wi-Fi or Cellular. For each of these types of communications, the product (target) must support
the communication method to be used.

 DCCoAP communications via Cellular Data Modem requires a Telematics contract with Divelbiss or a
 contract with a cellular carrier. Additional charges apply.

 All DCCoAP cloud server solutions are custom. Consult Divelbiss for custom COAP cloud server
 solutions.

For each communication method, EZ LADDER (per ladder diagram project) requires additional configuration
and setup for the communications method itself as some communication methods may be used outside of
DCCoAP communications. Refer to Chapter 19 - Ethernet / Wi-Fi for configuring Wi-Fi or Chapter 27 - Cel-
lular Connectivity for configuring the Cellular Data Modem option.

 Ethernet and Wi-Fi may be used to communicate via Modbus TCP without a DCCoAP
 communications (local communications).

 Cellular data modem may only be used for communications to custom developed DCCoAP
 communications solutions and do not provide internet access for the device (browsing, etc).

 Regardless of the communications method, the product (target) must support the communication
 method to be used.

In addition to the communications method configuration, the DCCoAP communications must be configured
and enabled in EZ LADDER Toolkit (per ladder diagram project) before it can be used.

Communications using Ladder Diagram
The DCCoAP function block within the ladder diagram is simple to use for communicating to and from the
DCCoAP cloud servers and is ideally suited for transmitting and receiving variables quickly and easily. The
DCCoAP function block supports two variable types: REAL and INTEGER.

Chapter 30 DCCoAP Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 389

 Other variable types (TIMER or BOOLEAN) must be converted to either INTEGER or REAL variable
 types before they can be sent / received between the product (ladder diagram) and the DCCoAP
 cloud server.

Installing DCCoAP in Project Settings

Before the DCCoAP function block and DCCoAP communications may be used in the ladder diagram pro-
gram, it must be installed in the Project Settings (for each ladder diagram project).

 Verify the communication method is installed (Ethernet, Wi-Fi, Cellular) before proceeding. Refer to
 this manual’s individual chapters for each of the methods for instructions for installation.

1. Using the EZ LADDER Toolkit menu, select Project.....Settings. The Project Settings dialog will open.
The target should have already been pre-selected and configured and the communications method installed
previously.

2. Click the properties button. The target’s Properties dialog will open. Refer to Figure 30-1.

3. Click the add device button. The PLCHIP-PXX Devices dialog will open.

4. Find and select the DCCoAP option (highlight). Refer to Figure 30-2.

5. Click ok. The DCCoAP Properties dialog will open. This dialog is used to configure the DCCoAP commu-
nications settings (what the DCCoAP_CLOUD function block uses). Refer to Figure 30-3. The first section of
this dialog is divided into two panes: Selected Interfaces and Available Interfaces.

6. Select (highlight) the communications method in the Available Interfaces pane and click the add button.
The selected method will now be moved from the Available Interfaces pane to the Selected Interfaces
pane. Refer to Figure 30-4.

Figure 30-1 Figure 30-2

Chapter 30 DCCoAP Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 390

Figure 30-3 Figure 30-4

7. Enter the Server (Name or IP Address) and other server information for the DCCoAP custom server.
 This information is provided by the DCCoAP cloud server manager.

8. Set the Device Auto Provisioning fields and settings per the requirements of the custom DCCoAP
server mapped in item 7. This is specific to how the DCCoAP server is implemented.

9. Click the ok button. The DCCoAP Properties and PLCHIP-PXX Devices dialog will close returning to the
target’s Properties dialog.

10. Click the ok button. The Target’s Properties dialog will close returning to the Project Settings dialog.

11. Click the ok button. The Project Settings dialog will close. The DCCoAP communications feature is now
installed in the ladder diagram project.

Be sure to save the ladder diagram project using the Save or Save As from the EZ LADDER Toolkit menu.

Using the DCCoAP Function Block

The DCCoAP function block is inserted into the ladder diagram by selecting it from the Insert Function drop-
down menu next to the edit st functions button on the tool bar. Locate the position and click to insert the
function block (as any other function block). The DCCoAP Communications Properties dialog will open.

This dialog is used to configure the variables that are sent to the DCCoAP cloud server (in the Send Vari-
ables pane) and the variables that will be received from the DCCoAP cloud server (in the Receive Variables
pane). Refer to Figure 30-5.

 Variables to be sent and received must already exist in the ladder diagram or be created using the
 Insert Variables (inst vars) or Edit Variables (edit vars) buttons before they can be added to the
 DCCoAP Communications Properties dialog.

Chapter 30 DCCoAP Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 391

Figure 30-5

Variables to send to DCCoAP Cloud Server Variables to received from DCCoAP Cloud Server

 The DCCoAP (DCCoAP communications) supports REAL and INTEGER variable types only.

 Other variable types (TIMER or BOOLEAN) must be converted to either INTEGER or REAL variable
 types before they can be sent / received between the product (ladder diagram) and the DCCoAP
 cloud server.

Variables are added to each pane by their corresponding add variable buttons. When the add variable
button is clicked, the Variables dialog opens and the variable can be selected from the existing list (from the
INTEGER and REAL tabs). Figure 30-6 is an example with one Send variable and one Receive variable.

 It is good practice to keep variable names as short as possible as the variable names can affect
 the transmit and receive data packet sizes. Shorter names will reduce packet size which can be
 important depending upon the communications method such as cellular where charges are based on
 data.

Figure 30-6

Chapter 30 DCCoAP Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 392

 Variables can be deleted from the Send and Receive panes by selecting the variable from the list in
 the appropriate pane and click the delete variable button.

When all the variables have been added, click ok.

The DCCoAP function is now placed and is ready to be connected in the ladder diagram.

 Based on the DCCoAP server, the product (target) may be required be pre-registered as a device on
 your personalized DCCoAP cloud server. This action must be handled before any communications
 can take place.

 In addition device being registration, the actual product (target) may require activation (based on the
 needs of the DCCoaP custom cloud server). If the activation is required, but completed or is not
 completed successfully, communications between the target and the DCCoAP cloud server will not
 function (See error codes).

The variable names entered in the DCCoAP function block will need to match specific configuration names
on the actual DCCoAP cloud server. The specific requirements and implementation is custom for each DC-
CoAP server implementation.

 The DCCoAP function block has one logic input: EN. The EN (enable) input is used to enable the
 function block and EN is rising edge sensitive. It will only function once (send and receive to / from
 the DCCoAP cloud server) for each time a rising edge is seen on the EN input. This edge sensitivity
 is helpful for controlling send and receive operations.

For a schedule send and receive based on time, the function’s EN input can be controlled using an internal
control relay (CR) that is being controlled using a timer. Figure 30-7 illustrates such ladder diagram circuit.

 Based on latency and communications times, the quickest any values can be sent / received and
 updated is about 1 / second.

Figure 30-7

Chapter 30 DCCoAP Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 393

The DCCoAP function block has 3 logic outputs: Q, ST and RS.

 The Q output is true when the function block’s EN input is true.

 The ST output pin provides the current function blocks status. This should be connected to an Integer
 variable. The status codes are as follows:

 3 = Completed 0 = Not Used
 2 = Sending -1 = Error
 1 = Queued to Send

 The RS output pin is the Response Code provided by the COAP cloud server during
 communications. This should be connected to an Integer variable.

 If the DCCoAP function block encounters an error, it will return one of these error codes on the RS
 pin. The common codes are shown in red.

 Error Error Codes Description
 None 0 No Error
 LWIP -1 Contact Divelbiss Support for this error.
 No Connection -3 Unable to make a connection to the DCCoAP cloud server. Check connections.
 Already Activated -4 Device has already been activated on the DCCoAP cloud server. Contact the COAP
 cloud server support for more information.
 Activation Failed -5 The activation for this device failed on the DCCoAP cloud server. Contact the COAP
 cloud server support for more information.
 Null Pointer -6 Contact Divelbiss Support for this error.
 Invalid String -7 Contact Divelbiss Support for this error.
 Queue is Full -8 The send / receive queue is full. Evaluate the amount and frequency of data being
 transmitted to the DCCoAP cloud server.
 Not Idle -9 Contact Divelbiss Support for this error.
 Other Error -10 Other unspecified error. Contact Divelbiss Support for this error.
 Not Activated -11 The device is trying to communicate to the DCCoAP cloud server but has not been
 activated on the server.
 Time-out -20 A communications time-out occurred. Check your network and settings (Wi-Fi,
 Ethernet).

 When the DCCoAP function block has completed without an error, it will return one of the responses
 on the RS pin. This code returned is built with 8 total bits. These bits are divided with the 3 upper bits
 being the response code before the ‘.’ shown below and the 5 lower bits representing the two digits
 after the ‘.’ shown below. A conversion would be necessary to use this response code.
 Typical response codes would be 69 or 129 (shown in red). Contact Divelbiss support for additional
 codes.

 Response Converted Code Description
 65 2.01 Created
 68 2.04 Changed
 69 2.05 Content was received.
 95 2.31 Continue
 129 4.01 Unauthorized - The CIK couldn’t be used to authenticate.

Chapter 30 DCCoAP Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 394

Activating the Device on a DCCoAP Cloud Server

Each product (device), depending on the DCCoAP Cloud server, most likely will be required to be activated
on the COAP cloud server before it can use the DCCoAP (or structured text) for communications (send-
ing / receiving data). This activation is usually only required once per device (unless the activation is lost or
deleted from the DCCoAP cloud server).

 When activation is required, before any communication may occur, the product (target) must be
 pre-registered as a device on DCCoAP cloud server. This action is handled the DCCoAP cloud
 manager or other entity.

Activating a product (target that has been pre-registered on the DCCoAP cloud server requires the use of
structured text functions, specifically EZ_DCCoAP_Activate. This function connects to the DCCoAP cloud
server and handles creating a link from the product to the cloud server (portal). This is typically only needed
to be done one time.

The activation process reads and writes a CIK identifier to the target’s EEPROM memory. This is used for
communications to the DCCoAP cloud server (identifier).

 The CIK may be written and erased using target specific structured text functions. This should be
 done under direction of Divelbiss personnel. Erasing or modifying the CIK may cause loss of
 communications to the DCCoAP cloud server and require the device to be added to the DCCoAP
 cloud server and re-activated.

For more details regarding communications codes for the EZ_DCCoAP_Activate structured text function,
refer to the target specific function EZ_DCCoAP_Activate (see Appendix B- Structured Text Function
Reference)

 Once activation is successful, it does not need to be repeated as the CIK identification and other
 parameters are stored.

 As it needs only be activated one time, there is flexibility in allowing for a stand-alone activation
 program or implementing the activation needs into a larger application.

DCCoAP Communications to Cloud Solutions
The DCCoAP function block within the ladder diagram is simple to use for communicating to and from DC-
CoAP cloud servers / portals and is ideally suited for transmitting and receiving variables quickly and easily.
Communications to and receiving data from the portal, activation and additional control features are avail-
able using structured text.

 130 4.02 Bad Option
 131 4.03 Forbidden
 132 4.04 Not Found
 136 4.08 Request Entity Incomplete
 140 4.12 Precondition Failed

Chapter 30 DCCoAP Communications

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 395

Structured text provides more flexibility in sending and receiving data (such as sending and receiving strings,
etc) that is not supported using the DCCoAP function block. This greater flexibility requires that the commu-
nications and it’s handling inside an application are written using the target specific and standard structured
text functions and requires a greater knowledge of the structured text programming language.

The following target specific structured text function blocks are used for DCCoAP Cloud communications:

EZ_DCCoAP_Activate
EZ_DCCoAP_EnableInterface
EZ_DCCoAP_EraseCIK
EZ_DCCoAP_GetServerTime
EZ_DCCoAP_GetState
EZ_DCCoAP_ReadCIK

EZ_DCCoAP_SendData
EZ_DCCoAP_SendDataRecord
EZ_DCCoAP_WriteCIK

For details on each of the target specific functions listed, refer to Appendix B - Target Specific ST Func-
tion Reference.

For details on using structure text, refer to Chapter 26 - Structured Text.

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 396

Appendix A
Function Reference

This chapter provides detailed information for each function block and object found in the
EZ LADDER Toolkit (for P-Series Targets). For each function block and object, the follow-
ing is provided: type, inputs, outputs and other special instructions needed to use them.

Chapter Contents
Object and Function Block Basics ..399

ABS ...400
ACOS ..401
ADD ...402
AND ...403
ASIN ..404
ATAN ...405
AVG ...406
BIT_PACK ...407
BIT_UNPACK ...408
BOOLEAN ..409
CEIL ..410
CMP ..411
CNTR_LS7366R ...412
CNTR_PXX_QEI ...415
CNTR_PXX_QEI_CMP ...417
CNTR_PXX_QEI_VEL ..419
COS ...421
CTD ...422
CTU ...423
CTUD ..424
DCCoAP ...426
DIRECT COIL ..429
DIRECT CONTACT ..430
DIV ..431
DRUM_SEQ ..432
EQUAL TO (=) ..434
EEPROM_READ ...435
EEPROM_WRITE ...436
EXP ...438
EXPT ...439

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 397

FLOOR ..440
F_TRIG ..441
GETDATE ...442
GETDTLOCAL ..443
GETTIME ..445
GREATER THAN (>) ...446
GREATER THAN OR EQUAL TO (>=) ..447
HYSTER ..448
INTEGER ..449
INVERTED COIL ..450
INVERTED CONTACT ...451
J1939_RX_PGN ...452
J1939_TX_PGN ...454
JMP ...456
KEYPAD ..457
KEYPAD2 ...458
LABEL ..460
LATCH (COIL) ..461
LCD_CLEAR ...462
LCD_PRINT ..463
LESS THAN (<) ..465
LESS THAN OR EQUAL TO (=<)...466
LIMIT ...467
LN ..468
LOG ...469
MAVG ..470
MAX ..471
MIN ..472
MOD ..473
MODBUS_MASTER ...474
MODBUS_MASTER2 ...476
MODBUS_MASTER3 ...478
MODBUS_SET_PROPERTY ..480
MQTT_CONNECT ..481
MQTT_PUBLISH ..484
MULT ...487
MUX ..488
NOT ...489
NOT EQUAL TO (<>) ..490
OPTICAN_NODESTATUS ..491
OPTICAN_TXNETMSG ..492
OR ...493
PID ..494
PWM ..496
PWM_FREQ ..497
RANDOM ..498
REAL ...499

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 398

R_TRIG ...500
ROL ...501
ROR ..502
RS ...503
SEED ...504
SEL ...505
SERIAL_PRINT ..506
SETDATE ..509
SETDTLOCAL ..510
SETTIME ...512
SETTZOFF ..513
SHL ...514
SHR ...515
SIN ..516
SQRT ..517
SR ...518
ST_FUNC ..519
ST_FUNC_BLK ..520
SUB ...521
TAN ...522
TIMER ...523
TIMERCOUNTER ...524
TOF ...525
TON ...526
TP ..527
UART_SET_PROPERTY ..528
UNLATCH (COIL) ...529
WEBSERVER_DATA ..530
XOR ...532

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 399

Object and Function Block Basics
This chapter provides information on using each of the EZ LADDER Toolkit function blocks and objects. For
each object or function, the symbol diagram, information on the inputs and outputs and a description of the
function or block operation is provided. When applicable, truth tables, timing diagrams or other functions
details are provided.

This information is to provide basic practices of how each function or object works and is not intended to
provide complete applications or uses.

 As this chapter is a reference, providing function block and object details on ALL functions available
in the EZ LADDER Toolkit, the presence of a function does not guarantee availability of the function on all
 hardware targets.

Availability of functions and objects is determined by the hardware target that is configured for the ladder
diagram projects. Some functions and objects are not available on some targets. Refer to the actual hard-
ware target’s data sheet / manual or Chapter 22 - Hardware Targets for a list of supported functions and
objects based on target selection.

 It is important to formulate which function blocks may be used in a ladder diagram project and then
 verify and select the target that supports the desired features and function blocks.

All objects and function blocks described in this chapter are organized in alphabetical order.

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 400

Description:
The ABS function provides an absolute value output (O) from the input value (P1). The en-
able (EN) must be true for the ABS function block to be enabled. The Q output is true when
the ABS function is enabled.

ABS

Input / Output Connections:
The ABS function block placement requires connections of two input pins (EN, P1) and two output pins (Q,
O).

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X X
Q Output X
O Output X X

ABS

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 401

Description:
The ACOS function provides an Arc cosine (O) from the input value (P1). The enable (EN)
must be true for the ACOS function to be enabled. The Q output is true when the ACOS
function is enabled.

Input / Output Connections:
The ACOS function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

ACOS

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Arc Cosine of P1 Base Number

Related Functions: ASIN, ATAN, COS, SIN, TAN

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 402

Description:
The ADD functions sums all the inputs (Px) together and outputs this number (O). The num-
ber of inputs is specified when the function is placed in the program. The enable (EN) must
be true for the ADD function to be enabled. The Q output is true when the ADD function is
enabled.

Input / Output Connections:
The ADD function block placement requires connections of at least three input pins (EN, P1,
P2) and two output pins (Q, O).The number of inputs is specified when the function is in-
serted. The EN is always considered an input in the total number of inputs, therefore always
add one to the number of Px inputs that need to be used.

ADD

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic
Q Output X
O Output X X

ADD

Related Functions: SUB, MULT, DIV

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 403

Description:
The AND functions provides a bitwise AND function of the P1 and P2 inputs. The enable
(EN) must be true for the AND function to be enabled. The Q output is true when the AND
function is enabled.

Input / Output Connections:
The AND function block placement requires connections of three input pins (EN, P1, P2) and
two output pins (Q, O).

AND

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X

P2 Input X

Q Output X
O Output X

AND

Related Functions: OR, NOT, XOR

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 404

Description:
The ASIN function provides an Arcsine (O) from the input value (P1). The enable (EN) must
be true for the ASIN function to be enabled. The Q output is true when the ASIN function is
enabled.

Input / Output Connections:
The ASIN function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

ASIN

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Arc Sine of P1 Base Number

Related Functions: ACOS, ATAN, COS, SIN, TAN

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 405

Description:
The ATAN function provides an Arctangent (O) from the input value (P1). The enable (EN)
must be true for the ATAN function to be enabled. The Q output is true when the ATAN func-
tion is enabled.

Input / Output Connections:
The ATAN function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

ATAN

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Arc Tangent of P1 Base Number

Related Functions: ACOS, ASIN, COS, SIN, TAN

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 406

Description:
The AVG function averages all the inputs (Px) together and outputs this number (O). The
number of inputs is specified when the function is placed in the program. The enable (EN)
must be true for the AVG function to be enabled. The Q output is true when the AVG func-
tion is enabled.

Input / Output Connections:
The AVG function block placement requires connections of a minimum of three input pins
(EN, P1, P2) and two output pins (Q, O). The number of inputs is specified when the func-
tion is inserted. The EN is always considered an input in the total number of inputs, there-
fore always add one to the number of Px inputs that need to be used.

AVG

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic
Q Output X
O Output X X

AVG

Related Functions: MAVG

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 407

Description:
The BIT_PACK is a configurable function that will convert the inputs bits (from binary) to a
single 32 bit integer number. The Bx inputs are the bits to pack, the EN enables the function
when true. The Q output is true when the function is enabled. The output O is the 32-bit
integer result of the packed inputs.

The number of bits must be identified when the function is placed in the ladder diagram (1-
32 bits). Only boolean variables or contacts may be used as bit inputs.

Included in the configuration is the bit offset. The bit offset allows the programmer to use
multiple BIT_PACK functions and have a single 32 bit output integer by offsetting the bit
range for each function block. Note the number of bits + offset bits must be less than or
equal to 32.

Input / Output Connections:
The BIT_PACK function block placement requires connections of a minimum of two input
pins (EN, B0) and two output pins (Q, O). The number of bits is specified when the function

BIT_PACK

is inserted. The EN is not considered a bit to pack and is not included in the number of bits to pack when
placing the function block.

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Bx Input X Number of Bits is dynamic

Q Output X
O Output X

BIT_PACK

Related Functions: BIT_UNPACK

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 408

Description:
The BIT_UNPACK is a configurable function that will convert a 32 bit integer into up to 32
individual boolean outputs (bits). The I input is the 32 bit integer input, the EN enables the
function when true. The Q output is true when the function is enabled. The Bx outputs are
the result of the integer being converted to bit outputs (binary equivalent).

The number of bits must be identified when the function is placed in the ladder diagram (1-
32 bits). Only boolean variables may be used as bit outputs.

Included in the configuration is the bit offset. The bit offset allows the programmer to use
multiple BIT_UNPACK functions and have a single 32 bit input integer by offsetting the bit
range for each function block. Note the number of bits + offset bits must be less than or
equal to 32.

Input / Output Connections:
The BIT_UNPACK function block placement requires connections of two input pins (EN, I)
and a minimum of two output pins (Q, Bx). The number of bits is specified when the func-

BIT_UNPACK

tion is inserted. The EN is not considered a bit to unpack and is not included in the number of bits to unpack
when placing the function block.

 Although the output type for the Bx bit outputs is boolean, boolean variables must be connected to
 the Bx outputs. It is not allowed to connect coils.

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True

I Input X

Q Output X
Bx Output X Number of Bits is dynamic

BIT_UNPACK

Related Functions: BIT_PACK

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 409

Description:
The BOOLEAN function converts the input (P) into a boolean (zero or non-zero) output (O).
The enable (EN) must be true for the BOOLEAN function to be enabled. The Q output is
true when the BOOLEAN function is enabled.

Input / Output Connections:
The BOOLEAN function block placement requires connections of two input pins (EN, P) and
two output pins (Q, O).

BOOLEAN

 Although the output type for the O output is boolean, a boolean variable must be connected to
 the O output. A coil may be connected, but compile errors will result.

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P Input X X X
Q Output X
O Output X

BOOLEAN

Related Functions: INTEGER, REAL, TIMER

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 410

Description:
The CEIL function provides a rounded-up result of the P1 Input and outputs this number
(O). The enable (EN) must be true for the CEIL function to be enabled. The Q output is true
when the CEIL function is enabled.

Input / Output Connections:
The CEIL function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

CEIL

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Rounded Up P1 Base Number

Related Functions: FLOOR

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 411

Description:
The CMP function compares the P1 and P2 inputs. LT is true when the P1 input is less than
the P2 input. EQ is true when the P1 input equals the P2 input. GT is true when the P1
input is greater than the P2 input. The enable (EN) must be true for the CMP function to be
enabled. When the function is disabled, all outputs (LT, GT and EQ) are off.

Input / Output Connections:
The CMP function block placement requires connections of three input pins (EN, P1, P2) and
three output pins (LT,EQ, GT). There is no Q output on the CMP function block

CMP

 Although the output type for the LT,EQ and GT outputs is boolean, coils must be connected to
 the them. A boolean variable may be connected and it will compile, but it will not function on the
 target.

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X X
P2 Input X X

LT Output X
EQ Output X
GT Output X

CMP

Related Functions: LIMIT, HYSTER

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 412

Description:
The CNTR_LS7366R function block is used to read and write to the LS7366R counter inte-
grated circuit. The LS7366R is an integrated circuit that operates as a high speed counter
that supports counting up, down and also quadrature. In addition to this function block, the
LS7366R must be configured for the application. It is configured in the Project Settings. A
description of the configuration will follow later in this function block explanation.

The LS7366R operates using internal registers. There are three registers in the LS7366R.
OTR, DTR and Actual Count. Per the design of the LS7366R, the actual count register can
never be directly read or written to; therefore, the other registers must be used to read and
write to the actual count. As an example, when the function block Read Count (RC) input is
true, the actual count is copied to the OTR register and then the OTR registers is output at
the function blocks count (CT) output. DTR is used to set the count value and may be used
as a comparison (see LFLAG/DFLAG).

The first step is to configure the LS7366R. While targets may differ slightly, this configu-
ration is found by clicking the Menu...then Project Settings. Look for a button LS7366R
Properties. Clicking this button will open the LS7366R Device Properties Window. In this
window, configure the LS7366R for the type of application (type of counting along with op-
tional settings).

CNTR_LS7366R

LS7366R Device Properties Window:

CNTR_LS7366R

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 413

Quadrature Mode
Non-quadrature: Counter input B sets the direction of counting (increase or decrease), and a pulse on
 input A causes the counter to count by 1.
X1 quadrature: Counter operates in X1 quadrature mode.
X2 quadrature: Counter operates in X2 quadrature mode.
X4 quadrature: Counter operates in X4 quadrature mode.

Count Mode
Free-Running: Free running mode. Counter will wrap in either direction if maximum or minimum value is
 reached.
Single-cycle: Counter will count until maximum value is reached and then stop counting. Used with CY
 Flag. Counter must be reset to continue counting.
Range-limit: Counter will only count between zero and the value loaded in the DTR register.
Modulo-n: Actual count will equal number of pulses divided by value of the DTR register + 1.

Index Mode
Disable Index: Index input is disabled and will not cause any action on the actual count register.
Load CNTR: When the index input is active, the actual count register is loaded with the value
 of the DTR register. The DTR register is loaded using PD and LD on the function
 block.
Reset CNTR: When the Index input is active, the actual count register is reset to zero.
Load OTR: When the index input is active, the OTR register is loaded with the actual count
 register value. The OTR register is used to read the current count.
Asynchronous Index: In quadrature mode, if index is active, it is applied (acted on) regardless of its
 phase relationship to inputs A and B.
Synchronous Index: In quadrature mode, If index is active, it must meed the phase relationship of
 inputs A and B before it can be applied (acted on).

Clock Filter
Div by 1: Filter Frequency divided by 1. This is based on the input frequency of A and B inputs.
Div by 2: Filter Frequency divided by 2. This is based on the input frequency of A and B inputs.

LFLAG/DFLAG
Flag on IDX: When index is true, the LFLAG will set and latch, while DFLAG will be set only while the
 condition is maintained.
Flag on CMP: When actual count value = value of the DTR register, the LFLAG will set and latch, while
 DFLAG will be set only while the condition is maintained.
Flag on BW: When enabled, when counter wraps from zero to maximum, the LFLAG will set and latch,
 while DFLAG will be set only while the condition is maintained.
Flag on CY: When enabled, when counter wraps from maximum to zero, the LFLAG will set and latch,
 while DFLAG will be set only while the condition is maintained.

The DFLAG and LFLAG is typically read using digital inputs that are specific to each target. Refer to the
target’s User Manual.

In addition to the hardware inputs that control the LS7366R, the CNTR_LS7366R function block is used in
EZ LADDER to read the count, reset the count and control the registers.

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 414

Function Block Inputs:

EN: Function block enable (Boolean). When true, the function block is enabled.
RC: Read Count Input (Boolean). When true, the actual count is internally copied to OTR and then
 OTR is output at the count output (CT). When false, the OTR is output at the count output (CT)
 without copying the actual count.
LD: Load DTR input (Boolean). When true, the DTR register is loaded with the value of the variable
 connected to the PD input. When using LC and LD, LC has a higher priority and will execute first
 before LD.
LC: Load Counter input (Boolean). When true, the value of PC is loaded into the DTR register and then
 the DTR register is copied to the actual count. When using LC and LD, LC has a higher priority and
 will execute first before LD.
PD: Value (Integer) to be loaded into DTR when LD input is true.
PC: Value (Integer) to be loaded into DTR and then actual count when LC is true.

Function Block Outputs:

CE: Output (Boolean) is true when the function block is enabled and no errors are present.
DR: Direction output (Boolean). Identifies the current count direction (0 or 1).
ST: Status output (Integer). The output provides a numeric represtation of the status of the LS7366R
 current function. Consult factory if more information is required.
CT: Current Count (Integer).

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 415

Description:
The CNTR_PXX_QEI function block is used to read the current position of a quadrature en-
coder connected to the quadrature encoder inputs. For more details on how the quadrature
counter inputs and function blocks operate together, see Chapter 18 - Counters & Timers.

The enable (EN) input must be true for the CNTR_PXX_QEI function block to operate. The
Q output is true when the function block is enabled. The reset position counter input (RC)
will reset the internal position counter when true. The reset index counter input (RI) will reset
the internal index counter when true.

The direction output (DR) identifies the direction of encoder travel (0 or 1). The status output
(ST) identifies the current status of the encoder. The position counter value output (CT) will
be equal to the current encoder position. The index counter value output (IX) will be equal to
the current index counter (number of time the encoder has passed its maximum position).

IX is incremented and decremented as needed when the current encoder position either
passes its maximum position or its minimum position.

 The quadrature encoder must be installed in the Project Settings before this function
 block may be placed. Other parameter configurations must be completed during this

CNTR_PXX_QEI CNTR_PXX_QEI

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
RC Input X Active True Resets Position Counter (CT)

RI Input X Active True Resets Index Counter (IX)

DR Output X Direction of Encoder Travel (0 or 1)
ST Output X Status of Encoder

CT Output X Current Value Encoder Position

IX Output X Current Value of Idex Counter

Q Output X

 installation. Refer to Chapter 18 - Counters & Timers.

Based on the qudarature encoder input configuration in the Project Settings menu, as the encoder moves in
the forward direction, when the position exceeds the maximum value, the index counter is incremented and
the position is set to zero. As the encoder moves in a reverse direction, when the position reaches 0, the
index counter is decremented and the position is set to the maximum.

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 416

Example Circuit:

Related Functions: CNTR_PXX_QEI_CMP, CNTR_PXX_QEI_VEL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 417

Description:

The CNTR_PXX_QEI_CMP function block is used to load values into compare reg-
isters (3 available for Position Counter and 3 avaliable for Index Counter). For more
details on how the quadrature counter inputs and function blocks operate together,
see Chapter 18 - Counters & Timers.

When the function block is placed, a dialog box is automatically displayed (See next
page). The Compare drop-down menu is used to select the type of compare to use
(load and monitor).

The enable (EN) input must be true for the CNTR_PXX_QEI_CMP function block to

CNTR_PXX_QEI_CMP CNTR_PXX_QEI_CMP

operate.

The Q Output is based on the type of compare and the actual count value.

 The quadrature encoder must be installed in the Project Settings before this function block may be
 placed. Other parameter configurations must be completed during this installation. Refer to
 Chapter 18 - Counters & Timers.

Three hardware compare registers are provided for the Position Counter compare. These are listed as
CMP0, CMP1 and CMP2 in the drop-down menu in the dialog. When a CMPx is selected, the value con-
nected to the P1 input is compared to the Position Counter and the Q is true if these values are equal. As
three compare registers are provided, using three different instances of this function block with different
CMPx selected will provide three individual compares that may be made to the Position Counter.

Three hardware compare registers are provided for the Index Counter compare. These are listed as IDX0,
IDX1 and IDX2 in the drop-down menu in the dialog. When a IDXx is selected, the value connected to the
P1 input is compared to the Index Counter and the Q is true if these values are equal. As three compare
registers are provided, using three different instances of this function block with different IDXx selected will
provide three individual compares that may be made to the Index Counter.

Additionally, these two features (Position Counter Compare and Index Counter Compare) may be combined
by this function block. The combination requires the postion counter and index counter each equal their
respective Px inputs to the function block. These items are listed as CMP_IDX0, CMP_IDX1, CMP_IDX2.
When using the CMP_IDXx item, the P1 input is the compare value for the Position Counter and the P2 in-
put is the compare value for the Index Counter. The Q Output is true when both the Position Counter equals
the P1 input and the Index Counter equals the P2 input. As three compare registers are provided, using
three different instances of this function block with different CMP_IDXx selected will provide three individual
compares that may be made to the both the Position and Index Counters.

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True

P1 Input X Compare Value for Position Counter

P2 Input X Compare Value for Index Counter

Q Output X True when Compare values are true

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 418

Related Functions: CNTR_PXX_QEI, CNTR_PXX_QEI_VEL

Dialog Box:

Example Circuit:

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 419

Description:
The CNTR_PXX_QEI_VEL function block is used to convert quadrature input counts
into a velocity based on engineering units.

When the function block is placed, a dialog box is automatically displayed (See next
page). The Sample Period in seconds and the Pulses per Revolution is set using the
dialog box.

 The quadrature encoder must be installed in the Project Settings before this
 function block may be placed. Other parameter configurations must be
 completed during this installation. Refer to Chapter 18 - Counters & Timers.

CNTR_PXX_QEI_VEL CNTR_PXX_QEI_VEL

The enable (EN) input must be true for the CNTR_PXX_QEI_VEL function block to operate. The function
block counts pulses on the quadrature inputs over the time set by the Sample Period in seconds. It uses the
pulses per revolution, the Sample Period and the actual counts to calculate the velocity.

The actual velocity (in engineering units) is output on the V output. The VC output is the number of pulses
counted in the sample period. The Q output is true only for the ladder diagram scan when the velocity is
calculated and updated on the V output.

 If the Pulses per Revolution is 1, then the V output is equal to the counter frequency. If not set to 1,
 then the V output will be revolutions per second.

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True

VC Output X Number of Pulses in Sample Period

V Output X Velocity in Revolutions per second

Q Output X True for Scan when Velocity is updated

Example Circuit:

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 420

Dialog Box:

Related Functions: CNTR_PXX_QEI, CNTR_PXX_QEI_CMP

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 421

Description:
The COS function provides a cosine (O) from the input value (P1). The enable (EN) must
be true for the COS function to be enabled. The Q output is true when the COS function is
enabled.

Input / Output Connections:
The COS function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

COS

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Cosine Output of P1 Base Number

Related Functions: ACOS, ASIN, ATAN, SIN, TAN

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 422

Description:
The CTD function is a programmable software down counter. A true on CD will cause the
counter to decrement by one. Once the counter (CV) equals zero, the Q output will be true.
A true on LD will cause the counter to load the PV as the current (CV) count and reset the Q
output. The down counter triggers on a false to true transition on the CD input.

Input / Output Connections:
The CTD function block placement requires connections of three input pins (CD, LD, PV)
and two output pins (Q,CV).

CTD

Example Circuit:

Timing Diagram:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
CD Input X Rising Edge
LD Input X

PV Input X

Q Output X True when CV=0
CV Output X

CTD

Related Functions: CTU, CTUD

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 423

Description:
The CTU function is a programmable software up counter. A true on CU will cause the coun-
ter to increment by one. Once the counter (CV) equals the preset value (PV), the Q output
will be true. A true on reset (R) will cause the counter reset to zero and reset the Q output.
The down counter triggers on a false to true transition on the CU input.

Input / Output Connections:
The CTU function block placement requires connections of three input pins (CU, R, PV) and
two output pins (Q,CV).

CTU

Example Circuit:

Timing Diagram:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
CU Input X Rising Edge
R Input X

PV Input X

Q Output X True when CV=PV
CV Output X

CTU

Related Functions: CTD, CTUD

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 424

Description:
The CTUD function is programmable software up and down counter. This counter is a com-
bination of the CTU and CTD; therefore, it can count up and down based on the count inputs
as well as the Reset and Load inputs.

With reset (R) not active, a true on input (CU) will increment the current (CV) count by one,
while a true on input (CD) will cause the current count (CV) to decrement by one. When the
CV = PV, the output (QU) will be true. When the CV = 0, the output (QD) will be true. A true
on the reset (R) will cause CV = 0, QU to go false and QD to go true. A true on the load (LD)
will cause CV = PV, QU to go true and QD to go false. The reset (R) is dominant and takes
priority over all inputs. The counter inputs trigger on a false to true transition on CU or CD.

Input / Output Connections:
The CTUD function block placement requires connections of five input pins (CU, CD, R, LD,
PV) and three output pins (QU, QD, CV).

CTUD

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
CU Input X Rising Edge
R Input X Reset is dominant

CD Input X Rising Edge

LD Input X

PV Input X

QU Output X True when CV=PV
QD Output X True when CV=0
CV Output X

CTUD

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 425

Timing Diagram:

Related Functions: CTU, CTD

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 426

Description:
The DCCoAP (formerly VCLOUD) is used to transmit data (variables) to and receive data
(variables) from a DCCoAP Cloud server (formerly VersaCloud M2M cloud portal). This func-
tion can be configured to use Ethernet, Wi-Fi and Cellular (based on available target hard-
ware) as the communications method to the cloud. The function block is rising edge sensitive
to allow for control of transmit and receive.

As multiple DCCoAP function blocks operate, data may be queued for transmit and receive.

Input / Output Connections:
The DCCoAP function block has 1 input port pin (EN) and 3 output port pins (Q, ST, RS).

DCCoAP

EN: The EN (enable) pin enables the function block. When a rising edge on EN is seen the function block
 attempts to communicate to (transmit and receive data) to the DCCoAP cloud server based on
 configuration items that are chosen when the function block is placed in the ladder diagram. This
 should be connected to a boolean contact.

Q: The Q output pin is true when the ENable input pin is true. This should be connected to a boolean
 coil.

ST: The ST output pin provides the current function blocks status. This should be connected to an Integer
 variable. The status codes are as follows:

 3 = Completed 0 = Not Used
 2 = Sending -1 = Error
 1 = Queued to Send

RS: The RS output pin is the Response Code provided by the DCCoAP cloud server during
 communications. This should be connected to an Integer variable.

 If the DCCoAP function block encounters an error, it will return one of these error codes on the RS
 pin. The common codes are shown in red.

 Error Error Codes Description
 None 0 No Error
 LWIP -1 Contact Divelbiss Support for this error.
 No Connection -3 Unable to make a connection to the DCCoAP cloud server. Check connections.
 Already Activated -4 Device has already been activated on the DCCoAP Cloud server. Contact Divelbiss
 support for more information.
 Activation Failed -5 The activation for this device failed on the DCCoAP Cloud server. Contact Divelbiss
 support for more information.
 Null Pointer -6 Contact Divelbiss Support for this error.
 Invalid String -7 Contact Divelbiss Support for this error.
 Queue is Full -8 The send / receive queue is full. Evaluate the amount and frequency of data being
 transmitted to the DCCoAP Cloud server.
 Not Idle -9 Contact Divelbiss Support for this error.
 Other Error -10 Other unspecified error. Contact Divelbiss Support for this error.

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 427

 Not Activated -11 The device is trying to communicate to the DCCoAP Cloud server but has not been
 activated on the server.
 Time-out -20 A communications time-out occurred. Check your network and settings (Wi-Fi,
 Ethernet).

 When the DCCoAP function block has completed without an error, it will return one of the
 responses on the RS pin. This code returned is built with 8 total bits. These bits are divided with the
 3 upper bits being the response code before the ‘.’ shown below and the 5 lower bits representing the
 two digits after the ‘.’ shown below. A conversion would be necessary to use this response code.
 Typical response codes would be 69 or 129 (shown in red). Contact Divelbiss support for addtional
 codes.

 Response Converted Code Description
 65 2.01 Created
 68 2.04 Changed
 69 2.05 Content was received.
 95 2.31 Continue
 129 4.01 Unauthorized - The CIK couldn’t be used to authenticate.
 130 4.02 Bad Option
 131 4.03 Forbidden
 132 4.04 Not Found
 136 4.08 Request Entity Incomplete
 140 4.12 Precondition Failed

When placing the DCCoAP function block, the DCCoAP Communications Properties window will auto-
matically open. This dialog is where the variables to transmit to the cloud and the variables to be received
from the cloud server are specififed.

The block is divided into two sections, the Send Variables and the Receive Variables. Variables may be added
to either side (integer or real) by using the side’s add variable button as well as removed from either side by
using the side’s delete variable button. Variables to be added in this dialog must already exist in the ladder
diagram project.

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 428

Example Circuit:

 It is good practice to keep variable names as short as possible as the variable names can affect
 the transmit and receive data packet sizes. Shorter names will reduce packet size which can be
 important depending upon the communications method such as cellular where charges are based on
 data.

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 429

Description:
The DIRECT COIL is a representation of an internal boolean variable output (coil) or an
actual hardware (real world) output. Its normal state is false or normally de-energized. An
internal DIRECT COIL may also be referred to as a control relay (CR). If there is power flow
to the DIRECT COIL, then it will be true (on). If there is no power flow to the DIRECT COIL,
then it will be false (off). The DIRECT COIL may only be placed in the last column.

Example Circuit:

DIRECT COIL DIRECT COIL

Related Functions: INVERTED COIL, DIRECT CONTACT, INVERTED CONTACT

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 430

Description:
The DIRECT CONTACT is a representation of an internal boolean variable input or an
actual hardware (real world) input. Its normal state is false or normally de-energized.
An internal DIRECT CONTACT may also be referred to as a control relay (CR). A true
condition on the input (if internal coil is true for internal contacts or real world input is
true), then the contact will allow power flow and devices located to the right of the DI-
RECT CONTACT may operate.

DIRECT CONTACT

Example Circuit:

DIRECT CONTACT

Related Functions: DIRECT COIL, INVERTED COIL, INVERTED CONTACT

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 431

Description:
The DIV function divides the P1 input by the P2 input and outputs the result (O). The en-
able (EN) must be true for the DIV function to be enabled. The Q output is true when the
DIV function is enabled. The result (O) is the whole number quotient only. No remainder is
provided.

Input / Output Connections:
The DIV function block placement requires connections of three input pins (EN, P1, P2) and
two output pins (Q,O).

DIV

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X X

P2 Input X X

Q Output X
O Output X X O=P1/P2

DIV

Related Functions: ADD, SUB, MULT

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 432

Description:
The DRUM_SEQ function is comprised of a matrix table of steps (rows of table) and the
channels (columns of table). For each channel, a boolean variable (to be used as a contact)
is automatically created. A DRUM_SEQ always starts in step 1. Each false to true transition
on the ST input will cause the step to increment to the next. The DRUM_SEQ will wrap to
step 1 after the last step. A true on RST will reset the DRUM_SEQ to step 1. RST is domi-
nant and will not allow the DRUM_SEQ to step when true.

Each step stores a unique setting for each channel. This setting can be set as on or off
(true, false). As a contact is created to represent each channel, when a DRUM_SEQ chang-
es steps, each channel is automatically set to the state the channel in that step.

DRUM_SEQ

Input / Output Connections:
The DRUM_SEQ function block placement requires connections of two input pins (RST, ST) and one output
pin (Q). In addition, a boolean variable to be used as a contact is created for each channel. A maximum of
32 channels is permitted per DRUM_SEQ. The matrix table is completed when the function is placed.

Configuring the number of channels, setting channel states and adding steps is handled using the DRUM
Sequencer Properties dialog box. This box is displayed when placing a DRUM_SEQ function block. Use the
buttons provided to add, insert, delete and edit steps. The order of steps may also be changed.

I/O Pin Type Integer Real Boolean Timer Active State Other Details
RST Input X RST is dominant
ST Input X

Q Output X

DRUM_SEQ

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 433

Example Circuit:

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 434

Description:
The EQUAL TO function provides an equal to comparison for the Px inputs. The number
of inputs is specified when the object is placed. The Q output is true if all the Px inputs are
equal. The Enable must be true for the EQUAL TO function to be enabled.

Input / Output Connections:
The EQUAL TO function block placement requires connections of at least three input pins
(EN, P1, P2) and one output pin (Q). The EN is always considered an input in the total
number of inputs, therefore always add one to the number of Px inputs that need to be used.

EQUAL TO (=)

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

Q Output X True when all Px are equal

EQUAL TO

Related Functions: <>, <, >, <=, >=

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 435

Description:
The EEPROM_READ recalls variables stored in non-volatile memory (EEPROM). The
function is enabled when a false to true is seen on EN. AD provides the actual address
to read from and V is the actual value that is read from the EEPROM. Q is true when the
read cycle has completed.

 The same variable type that writes to the EEPROM location should be used to
 read the EEPROM location. A memory map is recommended for organizing

EEPROM_READ

 variables stored in EEPROM.

Each EEPROM address is absolute and is one byte in size. Boolean variables fill two bytes while all other
variable types fill four bytes of EEPROM. When reading variables from EEPROM storage, it is important that
use the exact address location for the variable only (taking into account variable types and sizes).

See EEPROM_WRITE for more on how variables are written to EEPROM storage.

Input / Output Connections:
The EEPROM_READ function block placement requires connections of two input pins (EN, AD) and two
output pins (Q, V).

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Rising Edge
AD Input X

Q Output X
V Output X X X X

EEPROM_READ

Related Functions: EEPROM_WRITE

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 436

Description:
The EEPROM_WRITE function allows variables to be stored in non-volatile memory
(EEPROM). The function is enabled when the EN sees a false to true transition. AD
provides the actual address to write to EEPROM and V is the actual value that is written.
Q is true when the write cycle has completed without error.

 The same variable type that writes to the EEPROM location should be used to
 read the EEPROM location. A memory map is recommended for organizing
 variables stored in EEPROM.

Writing to EEPROM is a relatively slow operation and this must be considered when cre-

EEPROM_WRITE

ating the ladder diagram project as scan time can be affected during a write.

 EEPROM storage area has a limited number of write cycles; therefore it shouldn’t be used to store
 data which changes often and must be re-written often. Writing often to the same location can cause
 the location to fail.

Input / Output Connections:
The EEPROM_WRITE function block placement requires connections of three input pins (EN, AD, V) and
one output pin (Q).

Each EEPROM address is absolute and is one byte in size. Boolean variables fill two bytes while all other
variable types fill four bytes of EEPROM. When writing a boolean to address 0, the actual variable will use
addresses 0 and 1 (two bytes). Should you write an integer variable into address 0, then it would use ad-
dresses 0-3. A memory map should be created and used to assign variable types and addresses prior to
coding to ensure that variable size and types are accounted for.

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Rising Edge
AD Input X

V Input X X X X
Q Output X

EEPROM_WRITE

EEPROM ADDRESS LOCATION
Variable & Type 0 1 2 3 4 5 6 7 8 9

Variable 1 (Boolean)
Variable 2 (Integer)
Variable 3 (Boolean)

Variable 1 Address - Boolean (2
bytes) uses location 0 and 1.

Variable 2 Address - Integer (4
bytes) uses location 2,3,4 and 5.

Variable 3 Address - Boolean (2
bytes) uses location 6 and 7.

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 437

Example Circuit:

Related Functions: EEPROM_READ

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 438

Description:
The EXP function provides the natural exponential of the P1 input. The output (O) is the
natural exponential of the P1 input. The enable (EN) must be true for the EXP function to be
enabled.

Input / Output Connections:
The EXP function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

EXP

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Natural Exponential of P1

Related Functions: EXPT, LN, SQRT. LOG

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 439

Description:
The EXPT function provides the exponentiation of the P1 and P2 inputs. The output (O) is
the is the result of the exponentiation (P1P2). The enable (EN) must be true for the EXPT
function to be enabled.

Input / Output Connections:
The EXPT function block placement requires connections of three input pins (EN, P1, P2)
and two output pins (Q, O).

EXPT

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
P2 Input X Exponent Number
Q Output X
O Output X Result of Exponentiation

Related Functions: EXP, LN, SQRT, LOG

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 440

Description:
The FLOOR function provides a rouned-down output of P1 input. The output (O) is the is the
rounded-down number. The enable (EN) must be true for the FLOOR function to be en-
abled.

Input / Output Connections:
The FLOOR function block placement requires connections of two input pins (EN, P1) and
two output pins (Q, O).

FLOOR

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Rounded Down P1 Base Number

Related Functions: CEIL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 441

Description:
The F_TRIG is a function that may be used to trigger another function on the falling edge
of a transition. When the CLK detects a true to false transition, the output (Q) is energized
for one scan of the program only.

Input / Output Connections:
The F_TRIG function block placement requires connections of one input pin (CLK) and
one output pin (Q).

Example Circuit:

Timing Diagram:

F_TRIG

I/O Pin Type Integer Real Boolean Timer Active State Other Details
CLK Input X Falling Edge

Q Output X True for only one scan

F_TRIG

Program Scan Time

CLK

Q

Related Functions: R_TRIG

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 442

Description:
The GETDATE function reads the current date from the hardware real time clock. The
values of the date are stored into the integer variables on the output pins. The enable
(EN) must be true for the GETDATE function to be enabled. The Q output is true when
the function is enabled. The MN output returns the month (1-12), the DY output returns the
day of the month (1-31) , the YR output returns the current year (last two digits) and the
WD returns the day of the week (1-7, 1=Sunday). The MN, DY, YR and WD outputs must
be connected to Integer variables.

 The GETDATE function will return what ever the real time clock returns. Typically
 these values are for local date. If the real time clock is using UTC time, then the
 values will be different (not local time).

Input / Output Connections:
The GETDATE function block placement requires connections of one input pin (EN) and
five output pins (Q, MN, DY, YR, WD).

Example Circuit:

GETDATE

I/O Pin Type Integer Real Boolean Timer Active State
EN Input X Active True
Q Output X

MN Output X

DY Output X

YR Output X

WD Output X

GETDATE

Related Functions: GETTIME, SETTIME, SETDATE, SETDTLOCAL, GETDTLOCAL, SETTZOFF

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 443

Description:
The GETDTLOCAL function block reads the current date and time from the hardware real
time clock (stored as UTC time). The UTC time is converted using the time zone offset set by
the SETTZOFF function block and returns the local date and time.

The values of the date and time are stored into the integer variables on the output pins. The
enable (EN) must be true for the GETDTLOCAL function to be enabled. The Q output is true
when the function is enabled. The MN output returns the month (1-12), the DY output returns
the day of the month (1-31), the YR output returns the current year (either two for four dig-
its based on how the real time clock was set) and the WD returns the day of the week (1-7,
1=Sunday). The MN, DY, YR and WD outputs must be connected to Integer variables. The
HR output returns the hours (0-23), the MT output returns the minutes (0-59) and the SC
output returns the seconds (0-59) The HR, MT and SC outputs must be connected to Integer
variables.

 The SETTZOFF function block must be ran each time the hardware target is started
 (power cycled) to set the time zone offset with it’s value. This offset is not stored or
 kept in the controller in the event of a power loss or power cycle. Failure to run the
 SETTZOFF function block will result in incorrect time/date when using the
 SETDTLOCAL and GETDTLOCAL function blocks.

Input / Output Connections:
The GETDTLOCAL function block placement requires connections of one input pin (EN) and
eight output pins (Q, MN, DY, YR, WD, HR, MT, SC).

GETDTLOCAL

I/O Pin Type Integer Real Boolean Timer Active State
EN Input X Active True
Q Output X

MN Output X

DY Output X

YR Output X

WD Output X

HR Output X

MT Output X

SC Output X

GETDTLOCAL

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 444

Example Circuit:

Related Functions: GETTIME, SETTIME, SETDATE, SETDTLOCAL, SETTZOFF

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 445

Description:
The GETTIME function reads the current time from the hardware real time clock. The
values of the time are stored into the integer variables on the output pins. The enable (EN)
must be true for the GETTIME function to be enabled.

The Q output is true when the function is enabled. The HR output returns the hour of the
day (0-23) , the MN output returns the minutes and the SC returns the seconds. The HR,
MN and SEC outputs must be connected to Integer variables.

 The GETTIME function will return what ever the real time clock returns. Typically
 these values are for local time. If the real time clock is using UTC time, then the
 values will be different (not local time).

Input / Output Connections:
The GETTIME function block placement requires connections of one input pin (EN) and
four output pins (Q, HR, MN, SEC).

Example Circuit:

GETTIME

I/O Pin Type Integer Real Boolean Timer Active State
EN Input X Active True
Q Output X

HR Output X

MN Output X

SC Output X

GETTIME

Related Functions: GETDATE, SETTIME, SETDATE, SETDTLOCAL, GETDTLOCAL, SETTZOFF

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 446

Description:
The GREATER THAN provides an if greater than comparison for the Px inputs. The num-
ber of inputs is specified when the object is placed. The output (Q) is true if P1 is greater
than P2 and P2 is greater than P3 and so on. The enable (EN) must be true for the
GREATER THAN function to be enabled.

Input / Output Connections:
The GREATER THAN function block placement requires connections of at least 3 input
pins (EN, P1, P2) and one output pin (Q). The EN is always considered an input in the total
number of inputs, therefore always add one to the number of Px inputs that need to be
used.

Example Circuit:

GREATER THAN (>)

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

Q Output X

GREATER THAN

Related Functions: >, <, <=, <>, =

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 447

Description:
The GREATER THAN OR EQUAL TO provides an if greater than or equal to comparison
for the Px inputs. The number of inputs is specified when the object is placed. The output
(Q) is true if P1 is greater than or equal to P2 and P2 is greater than or equal to P3 and so
on. The enable (EN) must be true for the GREATER THAN OR EQUAL TO function to be
enabled.

Input / Output Connections:
The GREATER THAN OR EQUAL TO function block placement requires connections of
at least 3 input pins (EN, P1, P2) and one output pin (Q). The EN is always considered an
input in the total number of inputs, therefore always add one to the number of Px inputs
that need to be used.

Example Circuit:

GREATER THAN OR EQUAL TO (>=)

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

Q Output X

GREATER THAN
OR EQUAL TO

Related Functions: >, < , <=, <>, =

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 448

Description:
The HYSTER provides hysteresis into a control loop. When the actual (A) is greater than
the rise (R), then output RQ is true and FQ is false. When actual (A) is less than fall (F),
the output FQ is true and RQ is false. The enable (EN) must be true for the HYSTER func-
tion to be enabled.

Input / Output Connections:
The HYSTER function block placement requires connections of four input pins (EN, A, R,
F) and two output pins (RQ, FQ).

Example Circuit:

HYSTER HYSTER

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
A Input X

R Input X

F Input X

RQ Output X

FQ Output X

Related Functions: LIMIT

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 449

Description:
The INTEGER function converts the input (P) into an integer output (O). The enable (EN)
must be true for the INTEGER function to be enabled. The Q output is true when the IN-
TEGER function is enabled.

 In addition to converting a Boolean, Timer or Real to an integer, the INTEGER
 function block can be used to copy one integer to another.

Input / Output Connections:
The INTEGER function block placement requires connections of two input pins (EN, P) and two output pins
(Q, O).

Example Circuit:

INTEGER

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P Input X X X X

O X

Q Output X

INTEGER

Related Functions: REAL, BOOLEAN, TIMER

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 450

Description:
The INVERTED COIL is a representation of an internal boolean variable output (coil) or an
actual hardware (real world) output. Its normal state is true or normally energized. An inter-
nal INVERTED COIL may also be referred to as a control relay (CR). If there is power flow
to the INVERTED COIL, then it will be false (off). If there is no power flow to the INVERTED
COIL, then it will be true (on). The INVERTED COIL may only be placed in the last column.

Example Circuit:

INVERTED COIL INVERTED COIL

Related Functions: DIRECT COIL, DIRECT CONTACT, INVERTED CONTACT

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 451

Description:
The INVERTED CONTACT is a representation of an internal boolean variable input or an
actual hardware (real world) input. Its normal state is true or normally energized. An inter-
nal INVERTED CONTACT may also be referred to as a control relay (CR). A false condition
on the input (if internal coil is true for internal contacts or real world input is false), then the
contact will allow power flow and devices located to the right of the DIRECT CONTACT may
operate. A true on it’s coil or real world input will result in it’s contacts to not allow power flow.

INVERTED CONTACT

Example Circuit:

INVERTED
CONTACT

Related Functions: DIRECT CONTACT, DIRECT COIL, INVERTED COIL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 452

Description:
The J1939_RX_PGN function block is used to receive data over the J1939 / NMEA 2000
CAN network. There are several configurable items for receiving data, refer to Chapter 14 -
CAN Networking (J1939/NMEA 2000).

The J1939_RX_PGN function block receives data and stores it in variables located in the
ladder diagram program. These variables are mapped when the J1939_RX_PGN function
block is placed. Each function block insertion (instance) is treated individually in the ladder
diagram program.

Input / Output Connections:
When the EN (ENABLE) is true, the function block is active and will receive J1939/NMEA
2000 data as configured. The data is stored in the mapped variables.

The Q Output is true for one ladder diagram scan when data is received.

The ER (ERROR) output stores the current status of the data received from the PGN.

J1939_RX_PGN

The SA is the Source Address output. It must be connected to an integer variable. This variable will store the
Source Address of the last receive (which address this PGN was received from).

The DA is the Destination Address output. It must be connected to an integer variable. This variable will
store the Destination Address of the last receive if the PGN had a specific destination in the broadcast
packet. If the broadcast was a global broadcast, then the DA does not apply.

J1939_RX_PGN

1

2

3

4

5 6

7

8

9

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 453

Example Circuit:

Related Functions: J1939_TX_PGN

1. CAN Port Select Drop down box to select the CAN port (network) to be used for this
 J1939 receive function block.

2. PGN Pane Select the PGN to receive with this receive function block. Only one PGN per function
 block is allowed.

3. SPN Pane Select the SPN(s) to receive and store in variables of the selected PGN.

4. Map Variable Button Clicking this button opens the map variable dialog to map the selected SPN data to
 variables. The data variable is required, but the status variable is optional. Double-c
 licking the SPN in the SPN pane will also open the map variable dialog.

5. PGN Settings The PGN settings will update as different PGNs are selected. These values are based
 on the PGN settings in the J1939 database.

6. SPN /Field Settings The SPN settings will update as different SPNs are selected. These values are based
 on the SPN settings in the J1939 database. The Gain and Offset may be overridden by
 entering new values. Values changed will only affect this function block, not the J1939
 database. The Request Type may be configured to NOT_REQUEST which is standard
 or J1939_REQUEST to request a PGN/SPN on J1939 or NMEA_REQUEST to request
 data on an NMEA 2000 network.

7. Source Address Area This area determines the allowed source address of the network to receive data from
 (allowed device ID). Data may be received from all addresses or from specific address.

8. Destination Address Area This area determines the allowed destination addresses (in the broadcast packet) from
 which to receive data. Optionally, the receive function block can receive data that
 is specifically addressed to this device (controller), transmitted to any device or
 transmitted specifically to a device (but not this one). This allows to receive data that
 is specifcally transmitted to another device on the network.

9. Mapped Variables Area As variables are mapped to SPNs, they will be listed in this area.

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 454

Description:
The J1939_TX_PGN function block is used to transmit / broadcast data over the J1939 /
NMEA 2000 CAN network. There are several configurable items for transmitting data, refer
to Chapter 14 - CAN Networking (J1939/NMEA 2000).

J1939_TX_PGN

The J1939_TX_PGN function block transmits data that is stored in variables located in the ladder diagram
program. These variables are mapped when the J1939_TX_PGN function block is placed. Each function
block insertion (instance) is treated individually in the ladder diagram program.

Input / Output Connections:
When the EN (ENABLE) is true, the function block is active and will transmit J1939/NMEA 2000 data as con-
figured (based on broadcast rates). The transmitted data is read from the mapped variables.

The Q Output is true when the EN is true.

J1939_TX_PGN

5 6

1

2

3

4

7

8

1. CAN Port Select Drop down box to select the CAN port (network) to be used for this
 J1939 transmit function block.

2. PGN Pane Select the PGN to transmit with this receive function block. Only one PGN per function
 block is allowed.

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 455

Example Circuit:

Related Functions: J1939_RX_PGN

3. SPN Pane Select the SPN(s) to transmit from variables as the selected PGN / SPN.

4. Map Variable Button Clicking this button opens the map variable dialog to map the selected SPN to
 variables storing the data. Double-clicking the SPN in the SPN pane will also open the
 map variable dialog.

5. PGN Settings The PGN settings will update as different PGNs are selected. These values are based
 on the PGN settings in the J1939 database. The Priority and Broadcast rate can be
 overridden by entering new values. Values changed will only affect this function block,
 not the J1939 database. For NMEA 2000, optional checkboxes determine specific
 parameters for NMEA 2000. Refer to the NMEA 2000 specification for details.

6. SPN /Field Settings The SPN settings will update as different SPNs are selected. These values are based
 on the SPN settings in the J1939 database. The Gain and Offset may be overridden by
 entering new values. Values changed will only affect this function block not the J1939
 database.

7. Destination Address Area This area determines the destination address (in the broadcast packet) to send data
 to. If the destination address is set to 255, then the broadcast will be global. If set to a
 number other than 255, it is specifically addressed to that ID. The availability of setting
 the destination address depends on the PGN/SPN selected. Global may the only type
 supported based on the actual PGN/SPN.

8. Mapped Variables Area As variables are mapped to SPNs, they will be listed in this area.

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 456

Description:
The JMP function allows sections of ladder to be skipped by “jumping” to another sec-
tion. A LABEL must first be placed before the JMP is inserted. When the condition is true
to trigger the jump, the program scan jumps to the label, skipping any ladder between the
jump and label.

Input / Output Connections:
There are no Input or Output Connections

Example Circuit:

JMP

Related Functions: LABEL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 457

Description:
The KEYPAD function is used to allow users to input data. This function requires the Key-
pad feature be installed on the target’s hardware and target settings.

The keypad may be used in two ways. The first is using the KEYPAD function. This is
useful for allowing a user to input numeric data. The second is reading individual button
presses as a digital input. This is useful for menus. See Chapter 10 - Keypad Support
for details on keypad use.

Using the KEYPAD for Numeric Input (Keypad Function Block)
When EN is true, the function is enabled. Data is entered using numeric keypad buttons.
These numeric buttons are temporarily stored in the keypad buffer KB. When enter is pressed, the KB is
transferred stored in the variable connected to the output (KO). The output Q is true for the ladder diagram
scan in which the enter was pressed. Pressing the clear button on the keypad erases the buffer (KB). The
MI input specifies the minimum value allowed to be entered on the keypad while the MA input specifies the
maximum value allow to be entered on the keypad.

Input / Output Connections:
The KEYPAD function block placement requires connections of three input pins (EN, MI, MA) and three out-
put pins (Q, KB, KO).

Example Circuit:

KEYPAD

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
MI Input X X Minimum Allowed Value

MA Input X X Maximum Allowed Value

KB Output X X Keypad Buffer

KO Output X X Keypad Entered Value

Q Output X

KEYPAD

Related Functions: KEYPAD2

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 458

Description:
The KEYPAD2 function is used to allow users to input data. It operates similar to the KEY-
PAD function. This function requires the Keypad feature be installed on the target’s hard-
ware and target settings. See Chapter 10 - Keypad Support for details on keypad use.

The Keypad2 function block provides additional features over the Keypad function block.
These featues allow menus and Discrete key press menu items to be combined, allowing
for a more powerful and easier to implement menu.

Using the KEYPAD for Numeric Input (Keypad2 Function Block)
When EN is true, the function is enabled. Data is entered using numeric keypad buttons.
These numeric buttons are temporarily stored in the keypad buffer KB. When enter is
pressed, the KB is transferred stored in the variable connected to the output (KO). The
output Q is true for the ladder diagram scan in which the enter was pressed. Pressing the
clear button on the keypad erases the buffer (KB). The MI input specifies the minimum
value allowed to be entered on the keypad while the MA input specifies the maximum
value allow to be entered on the keypad.

The M output is a boolean that is set to true when any number (0-9), + or . is pressed.
Pressing the enter or clear will reset the M output to false. The KP output is a boolean out-
put that is true only for the single scan that a key was pressed. The KY output is an integer
output of the actual ASCII value of the key that was pressed.

Input / Output Connections:
The KEYPAD2 function block placement requires connections of three input pins (EN, MI, MA) and six out-
put pins (Q, KB, KO, M, KY, KP).

KEYPAD2

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
MI Input X X Minimum Allowed Value

MA Input X X Maximum Allowed Value

KB Output X X Keypad Buffer

KO Output X X Keypad Entered Value

M Output X True when 0-9, + or - Pressed

KY Output X Integer Output of Ascii Value Pressed

KP Output X True One Scan True one scan when key is pressed

Q Output X

KEYPAD2

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 459

Example Circuit:

Related Functions: KEYPAD

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 460

Description:
The LABEL function works with the JMP function to skip ladder diagram sections. A LA-
BEL must be placed first, then the JMP inserted. When the condition is true to trigger the
jump, the program scan “jumps” to the LABEL, skipping any ladder between the jump and
label.

Input / Output Connections:
There are no Input or Output Connections

Example Circuit:

LABEL

Related Functions: JMP

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 461

Description:
The LATCH coil operates similar to the DIRECT COIL except when true (energized), it will
remain energized until a true is seen on the UNLATCH coil. LATCH and UNLATCH coils
work as pairs. Any boolean variable can be used as a LATCH / UNLATCH coil.

Example Circuit:

LATCH (COIL) LATCH COIL

Related Functions: UNLATCH, DIRECT COIL, INVERTED COIL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 462

Description:
The LCD_CLR function block is used to clear the LCD display. When the EN input detects
a rising edge, the LCD Display is set to be cleared. The LCD display is cleared and up-
dated at the END of the ladder scan.

Input / Output Connections:
The LCD_CLR function block placement requires connections of one input pin (EN) and
one output pin (Q).

Example Circuit:

LCD_CLEAR

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Rising Edge
Q Output X

LCD_CLEAR

Related Functions: LCD_PRINT

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 463

Description:
The LCD_PRINT function is used for printing data to the LCD Display.

When then EN input senses a rising edge, the block prepares the text that was provided
when the LCD_PRINT function was placed and marks it to update at the end of the current
ladder scan. The Q output is set true when the print is completed. The ER output is set
to non-zero if the printed data is larger than the LCD will display. At the end of the ladder
scan, the display is updated. See Chapter 9 - LCD Display Support.

Input / Output Connections:
The LCD_PRINT function block placement requires connections of at least one input pin
(EN) and two output pins (Q, ER). Additional inputs are based on variables in printing text.

Example Circuit:

Text / Message Formatting:
The LCD_PRINT function text formatted per ANSI C “printf”. Variables as well as text may be printed.
These variables must be formatted correctly. As variables are added to the text, the function block will auto-
matically add the appropriate input for the variables.

Text
Text is entered exactly as the message is intended.

 Printing text longer than the display will support will result in truncated printing. It is ideal to structure
 printing based on column and row and to verify length of the printing.

LCD_PRINT

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Rising Edge

ERR Output X Set to non-zero if error

Ix Input X X X Dynamic Inputs

Q Output X True when print is completed

LCD_PRINT

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 464

Variables
Variables are placed in the text using flags and print specification fields. The following is the configuration
for adding variables to the text.

 %flag width .precision Example Text: OIL PSI %-3d

 % - identifies the beginning of a variable or other type of text entry
 flag - This flag is optional. Use the following flags to change the way data is transmitted.

 Flag Description
 - Left align the variable within the specified width. Default is align right.
 0 If width is prefixed with 0, leading zeros are added until the minimum width is reached.
 If 0 and - are used together, the 0 is ignored. If 0 is specified in an integer format, the
 0 is ignored.

 width - This flag is optional. Width is the number of characters that will be printed (total).
 .precision - This flag is optional. The precision is the number of digits after the decimal point
 when using REAL variables.

Variable Formats
Variables are formatted based on the variable type. The following are supported variable types and their
format.

 %d Signed Integer %X Upper Case Hexadecimal
 %u Unsigned Integer %f Real or Float Variable
 %x Lower Case Hexadecimal %b binary
 %o Octal

Other Special Characters and Formats

 To Print Use To Print Use
 % %% OFF / ON %O
 Boolean 0 or 1 %d FALSE / TRUE %T

Examples: Format Result Format Result
 OIL: %d OIL: 25 OIL: %04d OIL: 0025
 LS1: %T LS1: TRUE LS1: %O LS1: OFF
 TEMP: %6.2f TEMP: 234.12 TEMP: %3.f TEMP: 234

Related Functions: LCD_CLEAR

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 465

Description:
The LESS THAN provides an if less than comparison for the Px inputs. The number of in-
puts is specified when the object is placed. The output (Q) is true if P1 is less than P2 and
P2 is less than P3 and so on. The enable (EN) must be true for the LESS THAN function
to be enabled.

Input / Output Connections:
The LESS THAN function block placement requires connections of at least 3 input pins
(EN, P1, P2) and one output pin (Q). The EN is always considered an input in the total
number of inputs, therefore always add one to the number of Px inputs that need to be
used.

Example Circuit:

LESS THAN (<)

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

Q Output X

LESS THAN

Related Functions: <=, >, >=, <>, =

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 466

Description:
The LESS THAN or EQUAL TO provides an if less than or equal to comparison for the Px
inputs. The number of inputs is specified when the object is placed. The output (Q) is true
if P1 is less than or equal to P2 and P2 is less than or equal to P3 and so on. The enable
(EN) must be true for the LESS THAN or EQUAL TO function to be enabled.

Input / Output Connections:
The LESS THAN or EQUAL TO function block placement requires connections of at least
3 input pins (EN, P1, P2) and one output pin (Q). The EN is always considered an input in
the total number of inputs, therefore always add one to the number of Px inputs that need
to be used.

Example Circuit:

LESS THAN OR EQUAL TO (=<)

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

Q Output X

LESS THAN
EQUAL TO

Related Functions: <, >, >=, <>, =

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 467

Description:
The LIMIT function provides minimum and maximum limited output for the input (IN). The
function compares the input (IN). If it is greater that the maximum (MX), then the output
(O) is equal to the maximum (MX). If it is less than the minimum (MN) then the output (O)
is equal to the minimum (MN). If it is in between the maximum and minimum, then the
output (O) is equal to the actual input (IN). The enable (EN) must be true for the LIMIT
function to be enabled.

Input / Output Connections:
The LIMIT function block placement requires connections of four input pins (EN, MN, IN,
MX) and two output pins (Q, O).

Example Circuit:

LIMIT LIMIT

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
MN Input X X

IN Input X X

MX Input X X

Q Output X

O Output X X

Related Functions: CMP, HYSTER

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 468

Description:
The LN function provides the natural logarithm of the P1 input. The output (O) is the
natural logarithm of the P1 input. The enable (EN) must be true for the LN function to be
enabled.

Input / Output Connections:
The LN function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

Example Circuit:

LN

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X
P1 Input X Base Number

O Output X Natural Logarithm of P1 Base Number

Q Output X

Related Functions: EXP, EXPT, SQRT, LOG

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 469

Description:
The LOG function calculates the logarithm (base 10) of the P1 input. The output (O) is the
cacluated base 10 (logarithm) value of the P1 input. The enable (EN) must be true for the
LOG function to be enabled.

Input / Output Connections:
The LOG function block placement requires connections of two input pins (EN, P1) and
two output pins (Q, O).

Example Circuit:

LOG

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X
P1 Input X Base Number

O Output X Logarithm of P1 Number

Q Output X

Related Functions: EXP, EXPT, SQRT, LN

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 470

Description:
The MAVG function calculates the moving average of the P input. The number of samples
is specified when the object is placed. The output (O) is the calculated moving average
value of the P input. The enable (EN) must be true for the MAVG function to be enabled.
When EN is true, the output is the moving average. When EN is false, the output is equal
to the P input.

 The larger the number of samples, the more RAM is used and the slower the
 reaction time of the block output to input changes. Size the number of samples to
 give the best suited reaction time and to use the least amount of RAM needed
 accomplish to meet the operation specifications.

Input / Output Connections:
The MAVG function block placement requires connections of two input pins (EN, P) and two output pins (Q,
O).

Example Circuit:

MAVG

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P Input X X

O Output X X Moving Average of P

Q Output X

MAVG

Related Functions: AVG

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 471

Description:
The MAX function compares all the Px input values and outputs the largest of them on the
O Output. The number of inputs is specified when the object is placed. The enable (EN)
must be true for the MAX function to be enabled.

Input / Output Connections:
The MAX function block placement requires connections of at least 3 input pins (EN, P1,
P2) and two output pins (Q, O). The EN is always considered an input in the total number
of inputs, therefore always add one to the number of Px inputs that need to be used.

Example Circuit:

MAX

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

O Output X X

Q Output X

MAX

Related Functions: MIN

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 472

Description:
The MIN function compares all the Px input values and outputs the smalled of them on the
O Output. The number of inputs is specified when the object is placed. The enable (EN)
must be true for the MAX function to be enabled.

Input / Output Connections:
The MIN function block placement requires connections of at least 3 input pins (EN, P1,
P2) and two output pins (Q, O). The EN is always considered an input in the total number
of inputs, therefore always add one to the number of Px inputs that need to be used.

Example Circuit:

MIN

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

O Output X X

Q Output X

MIN

Related Functions: MAX

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 473

Description:
The MOD function calculates the modulo (remainder) of the division using the inputs P1
and P2. The P2 number should be greater than zero (zero or less than zero will cause the
function to return invalid data the output). The enable (EN) must be true for the MOD func-
tion to be enabled.

Input / Output Connections:
The MOD function block placement requires connections of three input pins (EN, P1, P2)
and two output pins (Q, O).

Example Circuit:

MOD

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Dividend

P2 Input X Divisor

O Output X Remainder

Q Output X

MOD

Related Functions: DIV

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 474

MASTER Properties:

Description:
The MODBUS_MASTER function block is used to communicate to slave devices on a
Modbus Network The MODBUS_MASTER function block only uses TCP Port 502. When
the MODBUS_MASTER function block is placed, additional information is provided that is
required for communications including the interface (UART/Ethernet) and Function Code
(Type of communication). For additional details and information, see Chapter 13 - Mod-
bus Networking.

Input / Output Connections:
The MODBUS_MASTER function block placement requires connections of two input pins
(EN, ID) and two output pins (Q, ER).

MODBUS_MASTER MODBUS_MASTER

The Modbus Master Properties Box shown left is
automatically displayed when the MODBUS_MASTER
function is placed in the ladder diagram.

Select the UART or Ethernet from the Interface Drop-
down Box.

Select the Function Code from the Drop-down Box to
identify the type of communication to the slave.

Click the Map Data button to map registers to vari-
ables during the communication process.

Map Data:

For the MODBUS_MASTER function block to read or write data (to/from slaves), variables and register
assignments must be configured using the Map Data button. Using the Modbus Master Map Data window,
variables may be assigned to transmit from and receive to. See window example shown.
For additional details and information, see Chapter 13 - Modbus Networking.

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
ID Input X ID Number / IP Address of Slave

ER Output X Communication Status / Error Number

Q Output X

Continued Next Page------»

Supported Function Codes:

Read / Write Multiple Registers (23)
Write Multiple Registers (16)
Write Multiple Coils (15)

Write Single Register (6)
Write Single Coil (5)
Read Input Registers (4)

Read Holding Registers (3)
Read Discrete Inputs (2)
Read Coils (1)

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 475

Example Circuit:

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 476

MASTER Properties:

Description:
The MODBUS_MASTER2 function block is used to communicate to slave devices on an
Ethernet Modbus Network. The MODBUS_MASTER2 function block allows the modbus
TCP Port to be set when thWhen the MODBUS_MASTER2 function block is placed. Ad-
ditional information is provided that is required for communications including the interface
(Ethernet) and Function Code (Type of communication). For additional details and infor-
mation, see Chapter 13 - Modbus Networking.

Input / Output Connections:
The MODBUS_MASTER2 function block placement requires connections of three input
pins (EN, ID, PT) and two output pins (Q, ER).

MODBUS_MASTER2 MODBUS_MASTER2

The Modbus Master Properties Box shown left is au-
tomatically displayed when the MODBUS_MASTER2
function is placed in the ladder diagram.

Select the Ethernet from the Interface Drop-down Box.

Select the Function Code from the Drop-down Box to
identify the type of communication to the slave.

Click the Map Data button to map registers to vari-
ables during the communication process.

Supported Function Codes:

Read / Write Multiple Registers (23)
Write Multiple Registers (16)
Write Multiple Coils (15)

Write Single Register (6)
Write Single Coil (5)
Read Input Registers (4)

Map Data:

For the MODBUS_MASTER2 function block to read or write data (to/from slaves), variables and register
assignments must be configured using the Map Data button. Using the Modbus Master Map Data window,
variables may be assigned to transmit from and receive to. See window example shown.

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
ID Input X IP Address of Slave

PT Input X TCP Port for Communications

ER Output X Communication Status / Error Number

Q Output X

Continued Next Page------»

Read Holding Registers (3)
Read Discrete Inputs (2)
Read Coils (1)

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 477

Example Circuit:

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 478

MASTER Properties:

Description:
The MODBUS_MASTER3 function block is used to communicate to slave devices on
an Ethernet Modbus Network. The MODBUS_MASTER3 function block allows the mod-
bus TCP Port and the unit ID to be set when the MODBUS_MASTER3 function block is
placed. Additional information is provided that is required for communications including
the interface (Ethernet) and Function Code (Type of communication). For additional de-
tails and information, see Chapter 13 - Modbus Networking.

Input / Output Connections:
The MODBUS_MASTER3 function block placement requires connections of four input
pins (EN, IP, PT, ID) and two output pins (Q, ER).

MODBUS_MASTER3 MODBUS_MASTER3

The Modbus Master Properties Box shown left is au-
tomatically displayed when the MODBUS_MASTER3
function is placed in the ladder diagram.

Select the Ethernet from the Interface Drop-down Box.

Supported Function Codes:

Read / Write Multiple Registers (23)
Write Multiple Registers (16)
Write Multiple Coils (15)

Write Single Register (6)
Write Single Coil (5)
Read Input Registers (4)

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
IP Input X IP Address of Slave

PT Input X TCP Port for Communications

ID Input X Unit ID (slave address)

ER Output X Communication Status / Error Number

Q Output X

Continued Next Page------»

Read Holding Registers (3)
Read Discrete Inputs (2)
Read Coils (1)

The ID is the unit ID (slave address) is typically used
when communicating via bridges, gateways, and rout-
ers that use a single IP address to support multiple
independent Modbus units. The slave address (ID)
may be passed through the gateway / router device
(all dependent upon the devices connected).

Select the Function Code from the Drop-down Box to identify the type of communication to the slave.

Click the Map Data button to map registers to variables during the communication process.

If the PT is set to 0, then the default TCP port (502 is
used.

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 479

Map Data:

For the MODBUS_MASTER3 function block to read or write data (to/from slaves), variables and register
assignments must be configured using the Map Data button. Using the Modbus Master Map Data window,
variables may be assigned to transmit from and receive to. See window example shown.

Example Circuit:

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 480

Description:
The MODBUS_SET_PROPERTY function block is used to set or change the
Modbus Slave paramaters. The parameters to change is based on the type of
communications implemented for the modbus slave device.

For Modbus Slave using UARTs: The function block sets the ID for the tar-
get from the ladder diagram program. This feature is ideal for reading inputs
(switches) and setting the slave ID accordingly. For additional details and infor-
mation, see Chapter 13 - Modbus Networking.

For Modbus Slave using Ethernet/Wi-Fi: The function block sets the TCP Port
for Ethenet/Wi-Fi communications from the ladder diagram program. This func-
tion is optional for changing the TCP Port for Ethernet Communications using
Modbus Slave.

MODBUS_SET_PROPERTY
MODBUS_SET_PROPERTY

When the EN is true, the slave ID or TCP Port number at input P is set for modbus functionality. The Q out-
put is true when EN is true. The ERR output will identify if a error occurred (if other than zero).

Input / Output Connections:
The MODBUS_SET_PROPERTY function block placement requires connections of two input pins (EN, P)
and two output pins (Q, ERR).

When placing the MODBUS_SET_PROPERTY function, an automatic dialog will appear that is used to set
paramters such as the type of interface and the Property to be set. At this time, only the Slave ID is sup-
ported for the property.

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 481

Description:
The MQTT_CONNECT function block opens the connection to the VersaCloud M2M+IoT
cloud server (IoT Central, IoT Hub or Exosite Murano) selected in the Project Settings.
The output (O) provides the result of the connection. The enable (EN) must be true for the
MQTT_CONNECT function to be enabled (and attempt connection).

Input / Output Connections:
The MQTT_CONNECT function block placement requires connections of one input pin
(EN) and four output pins (Q, ST, ER, RT).

The EN (Enable) is active high input and when true, it will attempt to connect to the Versa-
Cloud M2M+IoT cloud server (and stay connected based on configuration items set in the
dialog when inserting the MQTT_CONNECT function block. The function block connects to
the VersaCloud M2M+IoT cloud server that is selected/installed in the MQTT Project Set-
tings.

The ST output provides the status (MQTT state) of operation. The ST output values are as follows:

 1 Connecting
 2 Provisioning
 3 Provision Sent
 100 Connect Sent
 101 Connected
 200 Connect Error
 300 TLS Handshaking Failed
 301 Authentication Read Error
 302 Authentication Needs User Password
 303 Authentication Invalid User Password
 304 Authentication Not Authorized (Bad Username or Password)
 305 Connection Refused (Invalid Protocol Version)
 306 Connection Refused (Client ID Rejected)
 307 Connection Refused (Server Unavailable)

The ER output provides MQTT network errors detected (if any). The ER output values are as follows:

 0 No Error
 -1 Out of Memory Error
 -2 Buffer Error
 -3 Timeout Error
 -4 Reverved (Should not see)
 -5 Operation Currently in Progress
 -6 Illegal Value
 -7 Reverved (Should not see)
 -8 Address in Use
 -9 Already Connecting
 -10 Connection Already Established
 -11 Not Connected

MQTT_CONNECT MQTT_CONNECT

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 482

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
ST Output X MQTT State (see above)

ER Output X MQTT Network erros (see above)

RT Output X Number of connect retries

Q Output X True when EN is true

 -12 Network Interface Error (Cellular, Ethernet, etc)
 -13 Connection Aborted
 -14 Connection Reset
 -15 Connection Closed
 -16 Illegal Argument

 Additional errors below -8192 are specific to the SSL layter. For example, -9984 is a
 Certificate failed verification (CRL, CA or signature check failed. This can be caused by the
 certificate not matching, if there is not enough free memory (RAM) in the controller or if the
 certificate date is not vaild.

The RT output isnumber of retries that have occurred. This number is cumulative (until target reset or
power cycle). The larger the number, the more times the block has tried to connect to the selected cloud
solution (some may be successful, others may not).

The Q Output is true when the EN (Enable) input is true.

 The MQTT_CONNECT function block is only available after the MQTT feature has been added to
 the Project Settings and configured for operation.

 The MQTT_CONNECT function block requires an active connection (Ethernet, Wi-Fi or Cellular) for
 connecting to the VersaCloud M2M+IoT cloud server solution (selected in the MQTT Project
 Settings).

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 483

Related Functions: MQTT_PUBLISH

Dialog Box:

When placing the MQTT_CONNECT function block, the Mqtt Connect properties window will open automati-
cally. This window has a couple of parameters to be configured, based on needs and preferences.

The Enable Connect Retry checkbox is provided for the function block to automatically try reconnecting
should the connection be lost.

The Retry Delay (secs) field is used to enter the number of seconds to delay between reconnection retries.

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 484

Description:
The MQTT_PUBLISH function block sends data the VersaCloud M2M+IoT cloud server
(IoT Central, IoT Hub or Exosite Murano) selected in the Project Settings. The output (O)
provides the result transmission. The enable (EN) is rising edge sensitive for the MQTT_
PUBLISH function to be enabled (and attempt to send data).

Input / Output Connections:
The MQTT_PUBLISH function block placement requires connections of one input pin (EN) and two output
pins (Q, ER).

The EN (Enable) is rising edge sensitive and when a rising edge (false to true) is detected, attempt to trans-
mit data (variable added to the function block, selected when the function block is added) to the VersaCloud
M2M+IoT cloud server. The function block sends data to the VersaCloud M2M+IoT cloud server that is se-
lected/installed in the MQTT Project Settings.

 Multiple MQTT_PUBLISH blocks may be added tot he ladder diagram, but control over them
 is required to prevent multiple from attempting to send at the same time (use resource locking).

 The data (variables) to send to the VersaCloud M2M+IoT cloud server are selected in the Mqtt
 Publish Properties window when the MQTT_PUBLISH function block is inserted into the ladder
 diagram. See the Dialog box section for details on the Mqtt Publish Properties window.

The ER output provides MQTT network errors detected (if any). The ER output values are as follows:

 0 No Error
 -1 Out of Memory Error
 -2 Buffer Error
 -3 Timeout Error
 -4 Reverved (Should not see)
 -5 Operation Currently in Progress
 -6 Illegal Value
 -7 Reverved (Should not see)
 -8 Address in Use
 -9 Already Connecting
 -10 Connection Already Established
 -11 Not Connected
 -12 Network Interface Error (Cellular, Ethernet, etc)
 -13 Connection Aborted
 -14 Connection Reset
 -15 Connection Closed
 -16 Illegal Argument

 Additional errors below -8192 are specific to the SSL layter. For example, -9984 is a
 Certificate failed verification (CRL, CA or signature check failed. This can be caused by the
 certificate not matching, if there is not enough free memory (RAM) in the controller or if the
 certificate date is not vaild.

The Q output goes true for one ladder scan (the scan the send happened on), provided there was no errors.

MQTT_PUBLISH MQTT_PUBLISH

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 485

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
ER Output X MQTT Network erros (see above)

Q Output X True one scan when no errors.

Dialog Box:

When placing the MQTT_PUBLISH function block, the Mqtt Publish Properties window will open automati-
cally. This window is used to select the variables that will be sent to the VersaCloud M2M+IoT cloud server.

 The variables selected / added to the MQTT_PUBLISH block should already exist, or they may be
 added in the variable add dialog when selecting the variable (See variables in the Chapter 5 -
 Ladder Diagram Projects).

 Variable types used with the MQTT_PUBLISH block include BOOLEAN, REAL and INTEGER.

Click the add variable button to add a variable to the MQTT_PUBLISH block control. Select (or add a new
variable) to use and click ok. The variable will now be populated in the Mqtt Publish Properies dialog.

The JSON Name will now by default be populated with the name of the variable. This JSON Name can be
edited / changed, but this JSON Name entered is the name used in the cloud portal side to map the data.

 The JSON Name entered in this field must match the name of the variable on the cloud portal for
 data to be sent to and received on the cloud portal side. If these names do not match, data will not
 be received on the cloud portal.

In the Topic drop down menu, select: devices/{DeviceID}/messages/events/

Click ok when all the variables have been added to send to the VersaCloud M2M+IoT cloud solution (por-
tal).

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 486

 Variables can be deleted using the delete button in the Mqtt Publish Properties dialog.

 Multiple MQTT_PUBLISH blocks may be used in a single program.

Example Circuit:

Related Functions: MQTT_CONNECT

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 487

Description:
The MULT function multiplies all of the Px inputs together. The number of inputs is speci-
fied when the object is placed. The output (O) provides the result of the multiplication. The
enable (EN) must be true for the MULT function to be enabled.

Input / Output Connections:
The MULT function block placement requires connections of at least 3 input pins (EN, P1,
P2) and two output pins (Q, O). The EN is always considered an input in the total number
of inputs, therefore always add one to the number of Px inputs that need to be used.

Example Circuit:

MULT

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

O Output X X

Q Output X

MULT

Related Functions: ADD, SUB, DIV

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 488

Description:
The MUX function multiplexes the INx inputs into one output (O). The number of inputs
is specified when the object is placed. The output (O) provides the value of the selected
input. The value on input K (starts at zero for IN1) determines the number of the input
that will be present on the output. The enable (EN) must be true for the MUX function to be
enabled.

Input / Output Connections:
The MUX function block placement requires connections of at least four input pins (EN, K,
IN1, IN2) and two output pints (Q, O).

Example Circuit:

MUX MUX

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
K Input X

INx Input X X

Q Output X

O Output X X = Value of INx selected by K

Related Functions: SEL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 489

Description:
The NOT function provides a one’s complement (bit to bit negation) of the P input. The
output (O) provides the one’s complement. The enable (EN) must be true for the NOT
function to be enabled.

Input / Output Connections:
The NOT function block placement requires connections of two input pins (EN, P) and two
output pins (Q, O).

Example Circuit:

NOT

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P Input X

O Output X One’s Complement of P

Q Output X

NOT

Related Functions: OR, AND, XOR

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 490

Description:
The NOT EQUAL TO provides an if greater than or less than comparison for the Px inputs.
The number of inputs is specified when the object is placed. The output (Q) is true if P1 is
not equal to P2 and P2 is not equal to P3 and so on. The enable (EN) must be true for the
NOT EQUAL TO function to be enabled.

Input / Output Connections:
The NOT EQUAL TO function block placement requires connections of at least 3 input pins
(EN, P1, P2) and one output pin (Q). The EN is always considered an input in the total
number of inputs, therefore always add one to the number of Px inputs that need to be
used.

Example Circuit:

NOT EQUAL TO (<>)

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Px Input X X Number of inputs is dynamic

Q Output X

NOT EQUAL TO

Related Functions: =, <, >, >=, <=

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 491

Description:
The OPTICAN_NODESTATUS function listens for OK of the status register (191)
for the specified node over the OptiCAN network. When placing the function, the
NODE ID is specified as well as the Timeout. The function block will listen for the
node status register broadcast of the Node ID and update VAL and Q accordingly.
The Timeout value is the duration that the function block will listen and not receive
a status prior generating an Error on the VAL output pin and the Q output. The Q
output is true when the VAL output is valid. See Chapter 14 - OptiCAN Network-
ing for more information regarding using the function block and general OptiCAN networking.

Input / Output Connections:
The OPTICAN_NODESTATUS function block placement requires connections of one input pin (EN) and two
output pins (Q, VAL).

Example Circuit:

Error Codes:
The Node Status register (191) is represented by a 32 bit number. The lower 16 bits represents the current
status code while the upper 16 bits represents the error code.

There are three status codes supported on the OptiCAN network. The status codes are: 1 = Reset, 2 = Ac-
tive, and 4 = Reset.

 The Q output will be true if the VAL output is valid. If invalid (no response from node), then the Q
 output will be false and the VAL output will equal zero.

Error codes are divided into two groups. Device specific errors are numbered 0-32767 while common error
codes are numbered 32768-65535.

 Common Error Codes are as follows:

 65535 = CAN Controller Receive Error 65531 = CAN Controller Bus Off State
 65534 = CAN Controller Receive Warning 65530 = CAN Controller Data Overrun
 65533 = CAN Controller Transmit Error 65519 = OptiCAN Heartbeat Timeout
 65532 = CAN Controller Transmit Warning 65518 = CAN Controller Error

OPTICAN_NODESTATUS

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
O Output X See Error Codes

Q Output X

OPTICAN_NODESTATUS

Related Functions: OPTICAN_TXNETMSG

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 492

Description:
The OPTICAN_TXNETMSG function broadcasts the network control commands
Start Network, Stop Network and Reset Network on the OptiCAN network. This
function block globally broadcasts, therefore affecting all connected nodes. A Start
Network command must be broadcast after power up to start the OptiCAN network
nodes communications. When placing the function, a dialog box provides the selection of the type of com-
mand to send and an optional description box. See Chapter 14 - OptiCAN Networking for more information
regarding using the function block and general OptiCAN networking.

Input / Output Connections:
The OPTICAN_TXNETMSG function block placement requires connections of one input pin (EN) and one
output pin (Q).

Example Circuit:

OPTICAN_TXNETMSG

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Q Output X

OPTICAN_TXNETMSG

Related Functions: OPTICAN_NODESTATUS

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 493

Description:
The OR function provides a bitwise OR function of the P1 and P2 inputs. The enable (EN)
must be true for the OR function to be enabled. The Q output is true when the OR function
is enabled.

Input / Output Connections:
The OR function block placement requires connections of 3 input pins (EN, P1, P2) and
two output pins (Q, O).

Example Circuit:

OR

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X

P2 Input X

O Output X

Q Output X

OR

Related Functions: XOR, AND, NOT

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 494

Description:
The PID function provides an easy to use PID control algorithm. Specific PID information
is required when the function is placed as well as the PID inputs. The Q is true when the
function is enabled. The CO (Control Output) is the output calculated by the PID. The ER
is the error calculation of the PID (SP-PV). The PID function is defined by the difference
Equation:

u(n) = u(n-1) + Kp[e(n) - e(n-1)] + Ki [T * e(n)] + (Kd / T)[e(n) - 2 * e(n-1) + e(n-2)]

Where: u(n) = PID Output Kp = Proportional Gain Ki = Integral Gain
 Kd = Derivative Gain e(n) = Error (Setpoint - Process Variable) T = Sample Period

If SP, PV or process error is determined not to be infinite values, the error flag is set and
the CO is set to the IO value. When these values are valid (infinite) again, the PID function
will return to normal.

Input / Output Connections:
The PID function block placement requires connections of 7 input pins (EN, SP, PV, KP, KI, KD, IO) and 3
output pins (Q, CO, ER).

PID

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
SP Input X Control Set Point

PV Input X Process Feedback Variable

KP Input X Proportional Gain

KI Input X Integral Gain

KD Input X Derivative Gain

IO Input X Initial Value, PID is init to this value

CO Output X Control Output - Calculated Signal

ER Output X Error = Amount of error from set point

Q Output X

PID

Name: Name of the PID function.
Description: Enter a description.
Sample Period (Secs): The sample period in seconds
 (Min = .01S, Max = 86,400S),
 sample period resolution =
 50µS.
Minimum Output Value: Minimum PID Output value
 allowed.
Maximum Output Value: Maximum PID Output value
 allowed.

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 495

Example Circuit:

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 496

Description:
The PWM function controls the function of a hardware PWM output channel (this
channel is specified when the function is placed). When the EN is true, the hard-
ware PWM channel outputs a square wave with the specified duty cycle (DC) at
the frequency pre-programmed (this frequency is determined by the PWM channel
and is configured when the PWM channel is installed in the target settings menu
unless the PWM_FREQ function overrides this frequency with it’s own). The Q
output is true when the function is enabled.

When the PWM function is placed, you must specify the actual hardware PWM channel that the function will
control and the Polarity (Starting Low will cause the PWM channel to start with a TTL low, Starting High will
cause the PWM channel to start with a TTL high). Refer to Chapter 8 - Pulse Width Modulation for details
on PWM functionality.

Input / Output Connections:
The PWM function block placement requires connections of two input pins (EN, DC) and one output pin (Q).

Example Circuit:

PWM

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
DC Input X X

Q Output X

PWM

Related Functions: PWM_FREQ

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 497

Description:
The PWM_FREQ function controls the frequency of a hardware PWM output channel
(this channel is specified when the function is placed). When the EN sees a low to high
transition, the hardware PWM channel’s frequency is changed from it’s current value
(either from when the PWM channel was installed using the Target..Settings menu or a
PWM_FREQ function).

The PWM_FREQ only changes the hardware PWM channel’s frequency with a low to
high transition on EN. This frequency will be maintained regardless of the EN state. The only time this fre-
quency will change again is when the actual frequency input variable (input F) changes and the EN detects
another low to high transition. Q is true during the ladder diagram scan when the frequency is newly ap-
plied. All other times, the Q output is low.

When the PWM function is placed, you must specify the actual PWM channel group (CLK A or CLK B) that
the function will change the frequency to.

 If an invalid frequency is applied to input to F, then the Q Output will remain low as well as the actual
 PWM output.

Input / Output Connections:
The PWM function block placement requires connections of two input pins (EN, F) and one output pin (Q).

Example Circuit:

PWM_FREQ

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Rising Edge
F Input X X Input Frequency

Q Output X

PWM_FREQ

Related Functions: PWM

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 498

Description:
The RANDOM functions provides a random number based on the SEED (function) value.
The enable (EN) must be true for the RANDOM function to be enabled. The Q output is
true when the RANDOM function is enabled. The output (O) is the random number.

The RANDOM function is designed to be used with the SEED function. Without the SEED,
the output will not be random.

Input / Output Connections:
The RANDOM function block placement requires connections of one input pin (EN) and
two output pins (Q, O).

Example Circuit:

RANDOM

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
O Output X Random Integer Number

Q Output X

Related Functions: SEED

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 499

Description:
The REAL function converts the input (P) into an real output (O). The enable (EN) must be
true for the REAL function to be enabled. The Q output is true when the REAL function is
enabled.

 In addition to converting a Boolean, Timer or Integer to an real, the REAL
 function block can be used to copy one real to another.

Input / Output Connections:
The REAL function block placement requires connections of two input pins (EN, P) and two output pins (Q,
O).

Example Circuit:

REAL

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P Input X X X X

O X

Q Output X

REAL

Related Functions: TIMER, BOOLEAN, INTEGER

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 500

Description:
The R_TRIG is a function that may be used to trigger another function on the rising edge
of a transition. When the CLK detects a false to true transition, the output (Q) is energized
for one scan of the program only.

Input / Output Connections:
The R_TRIG function block placement requires connections of one input pin (CLK) and
one output pin (Q).

Example Circuit:

Timing Diagram:

R_TRIG

I/O Pin Type Integer Real Boolean Timer Active State Other Details
CLK Input X Falling Edge

Q Output X True for only one scan

R_TRIG

Program Scan Time

CLK

Q

Related Functions: F_TRIG

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 501

Description:
The ROL function provides a left-bit rotation of the P1 input. P2 specifies the number of
one-bit rotations. The P1 number is a integer representation of a binary number. The P2
number is an integer representation of the number of binary rotations (shifts) to occur to
P1. The actual bit only rotates when the maximum number is reached (example: 32 bit
rotation to the input number 1).The enable (EN) must be true for the ROL function to be
enabled. The Q output is true when the ROL function is enabled. The O Output is the ro-
tated number (represented in integer form).

Input / Output Connections:
The ROL function block placement requires connections of 3 input pins (EN, P1, P2) and two output pins (Q,
O).

Example Circuit:

ROL

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X

P2 Input X

O Output X

Q Output X

ROL

Related Functions: ROR

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 502

Description:
The ROR function provides a right-bit rotation of the P1 input. P2 specifies the number
of one-bit rotations. The P1 number is a integer representation of a binary number. The
P2 number is an integer representation of the number of binary rotations (shifts) to occur
to P1. The actual bit only rotates when the minimum number is reached (example: 32 bit
rotation to the input number 32). The enable (EN) must be true for the ROR function to
be enabled. The Q output is true when the ROR function is enabled. The O Output is the
rotated number (represented in integer form).

Input / Output Connections:
The ROR function block placement requires connections of 3 input pins (EN, P1, P2) and two output pins
(Q, O).

Example Circuit:

ROR

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X

P2 Input X

O Output X

Q Output X

ROR

Related Functions: ROL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 503

Description:
The RS function acts as a reset dominant bistable. If the set input (S) is true, the output
(Q) is true. A true on the reset (R) input sets the output (Q) to false (regardless of the set
(S) input state).

Input / Output Connections:
The RS function block placement requires connections of two input pins (S,R) and one
output pin (Q).

Example Circuit:

Truth Table:

RS

I/O Pin Type Integer Real Boolean Timer Active State Other Details
R Input X
S Input X

Q Output X

RS

SET RESET Q Q RESULT
 0 0 0 0
 0 0 1 1
 0 1 0 0
 0 1 1 0
 1 0 0 1
 1 0 1 1
 1 1 0 0
 1 1 1 0

Related Functions: SR

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 504

Description:
The SEED function provides the number which the RANDOM function uses as the basis
for generating a random number. The enable (EN) must be true for the SEED function to
be enabled. The Q output is true when the SEED function is enabled.

Input / Output Connections:
The SEED function block placement requires connections of two input pins (EN, P) and
one output pins (Q).

Example Circuit:

SEED

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P Input X

Q Output X

Related Functions: RANDOM

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 505

Description:
The SEL function provides selection of the P1 or P2 inputs. If enable (EN) is false, the out-
put (O) will be equal to the input P1. If the enable (EN) is true, the output (O) will be equal
to the input P2. The Q output is true when the SEL function is enabled.

Input / Output Connections:
The SEL function block placement requires connections of 3 input pins (EN, P1, P2) and
two output pins (Q, O).

Example Circuit:

SEL

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X X

P2 Input X X

O Output X X

Q Output X

SEL

Related Functions: MUX

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 506

Description:
The SERIAL_PRINT function is the transmit block for sending serial information using a
multi-purpose serial port.

When then EN input senses a rising edge, the block begins the serial transmission of its
text that was provided when the SERIAL_PRINT function was placed. The Q output is set
true when the transmission is completed. The ER output is set true if there is still data in
the buffer when the function block is enabled to transmit again. See Chapter 11 - Serial
Printing.

Input / Output Connections:
The SERIAL_PRINT function block placement requires connections of at least one input pin (EN) and two
output pins (Q, ER). Additional inputs are based on variables in serial text.

Example Circuit:

Text / Message Formatting:
The SERIAL_PRINT function text formatted per ANSI C “printf”. The function block examples shown are for
VT100 terminals. Variables as well as text may be printed. These variables must be formatted correctly. As
variables are added to the text, the function block will automatically add the appropriate input for the vari-
ables.

Text
Text is entered exactly as the message is intended. Variables, special formats and escape codes are also
added to this field. See the Variables, Other Special Variables and Formats and the Escape Sequence sec-
tions for details regarding adding special codes for specific needs.

SERIAL_PRINT

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Rising Edge

ERR Output X Set to non-zero if error

Ix Input X X X Dynamic Inputs

Q Output X True when transmit is completed

SERIAL_PRINT

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 507

Variables
Variables are placed in the text using flags and print specification fields. The following is the configuration
for adding variables to the text.

 %flag width .precision Example Text: OIL PSI %-3d

 % - identifies the beginning of a variable or other type of text entry
 flag - This flag is optional. Use the following flags to change the way data is transmitted.

 Flag Description
 - Left align the variable within the specified width. Default is align right.
 0 If width is prefixed with 0, leading zeros are added until the minimum width is reached.
 If 0 and - are used together, the 0 is ignored. If 0 is specified in an integer format, the
 0 is ignored.

 width - This flag is optional. Width is the number of characters that will be printed (total).
 .precision - This flag is optional. The precision is the number of digits after the decimal point
 when using REAL variables.

Variable Formats
Variables are formatted based on the variable type. The following are supported variable types and their
format.

 %d Signed Integer %X Upper Case Hexadecimal
 %u Unsigned Integer %f Real or Float Variable
 %x Lower Case Hexadecimal %b binary
 %o Octal

Other Special Characters & Formats

 To Print Use To Print Use
 % %% OFF / ON %O
 Boolean 0 or 1 %d FALSE / TRUE %T

Examples: Format Result Format Result
 OIL: %d OIL: 25 OIL: %04d OIL: 0025
 LS1: %T LS1: TRUE LS1: %O LS1: OFF
 TEMP: %6.2f TEMP: 234.12 TEMP: %3.f TEMP: 234

Escape Sequences located on next page.

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 508

Special Printing Codes (Escape Sequences)

 Escape Sequence Represents
 \a Bell (Alert)

 \b Backspace

 \f Form Feed

 \n New Line

 \r Carriage Return

 \t Horizontal Tab

 \’ Single Quotation Mark

 \” Double Quotation Mark

 \? Literal Question Mark

 \\ BackSlash

 \ooo ASCII character in Octal notation

 \xhh ASCII character in Hexadecimal notation, stops on last non-hex
 character.

 \uhhhh Prints hexidecimal, always uses 4 characters

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 509

Description:
The SETDATE function sets the current date on the hardware real time clock. The date is
set by using variables to apply values to each of the inputs. The enable (EN) must be true
for the SETDATE function to be enabled. The Q output is true when the function is en-
abled. The MN input sets the month (1-12), the DY input sets the day of the month (1-31)
, the YR input sets the current year (4 digits) and the WD sets the day of the week (1-7,
1=Sunday). The MN, DY, YR and WD inputs must be connected to Integer variables.

 The SETDATE function block will set the date to whatever values are provided on
 the variables. This actually allows you to set the real time clock using this function
 to UTC time by formatting the date / time correctly. The SETDTLOCAL, SETTZOFF
 and GETDTLOCAL function blocks are more appropriate when using UTC time.

 The real real time clock supports two or four digit year when setting, but 4 year is r
 ecommended. Four year date is required for Unix and UTC time.

Input / Output Connections:
The SETDATE function block placement requires connections of 5 input pins (EN, MN, DY,
YR, WD) and one output pin (Q).

Example Circuit:

SETDATE

I/O Pin Type Integer Real Boolean Timer Active State
EN Input X Active True
Q Output X

MN Input X

DY Input X

YR Input X

WD Input X

SETDATE

Related Functions: SETTIME, GETTIME, GETDATE, SETDTLOCAL, GETDTLOCAL, SETTZOFF

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 510

Continued Next Page------»

Description:
The SETDTLOCAL function block sets the current date and time to the hardware real time
clock (stored as UTC time) from local time. The stored UTC time is converted using the time
zone offset set by the SETTZOFF function block..

The values of the date and time are set by the integer variables on the input pins. The enable
(EN) must be true for the SETDTLOCAL function to be enabled. The Q output is true when
the function is enabled. The MN sets the month (1-12), the DY sets the day of the month (1-
31), the YR sets the current year (last two digits) and the WD sets the day of the week (1-7,
1=Sunday). The MN, DY, YR and WD inputs must be connected to Integer variables. The
HR input sets the hours (0-23), the MT input sets the minutes (0-59) and the SC input sets
the seconds (0-59) The HR, MT and SC inputs must be connected to Integer variables.

 The SETTZOFF function block must be ran each time the hardware target is started
 (power cycled) to set the time zone offset with it’s value. This offset is not stored or
 kept in the controller in the event of a power loss or power cycle. Failure to run the
 SETTZOFF function block will result in incorrect time/date when using the
 SETDTLOCAL and GETDTLOCAL function blocks.

Input / Output Connections:
The SETDTLOCAL function block placement requires connections of 9 input pins (EN, MN,
DY, YR, WD, HR, MT, SC) and 1 output pin (Q).

SETDTLOCAL

I/O Pin Type Integer Real Boolean Timer Active State
EN Input X Active True
MN Input X

DY Input X

YR Input X

WD Input X

HR Input X

MT Input X

SC Input X

Q Output X

SETDTLOCAL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 511

Example Circuit:

Related Functions: GETTIME, SETTIME, SETDATE, GETDTLOCAL, SETTZOFF

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 512

Description:
The SETTIME function sets the current time on the hardware real time clock. The time is
set by using variables to apply values to each of the inputs. The enable (EN) must be true
for the SETTIME function to be enabled.

The Q output is true when the function is enabled. The HR input sets the hour of the day
(0-23) , the MN input sets the minutes (0-59) and the SC sets the seconds (0-59). The HR,
MN and SEC inputs must be connected to Integer variables.

 The SETTIME function block will set the time to whatever values are provided on
 the variables. This actually allows you to set the real time clock using this function
 to UTC time by formatting the date / time correctly. The SETDTLOCAL, SETTZOFF
 and GETDTLOCAL function blocks are more appropriate when using UTC time.

Input / Output Connections:
The SETTIME function block placement requires connections of one input pin (EN) and
four output pins (Q, HR, MN, SEC).

Example Circuit:

SETTIME

I/O Pin Type Integer Real Boolean Timer Active State
EN Input X Active True
Q Output X

HR Input X

MN Input X

SC Input X

SETTIME

Related Functions: SETDATE, GETTIME, GETDATE, SETDTLOCAL, GETDTLOCAL, SETTZOFF

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 513

The Q output is true when the function is enabled. The TZ input sets the time zone offset in minutes (min-
utes of the time zone you are in from UTC time).

 The SETTZOFF function block must be ran each time the hardware target is started (power cycled)
 to set the time zone offset with it’s value. This offset is not stored or kept in the controller in the event
 of a power loss or power cycle. Failure to run this function block will result in incorrect time/date
 when using the SETDTLOCAL and GETDTLOCAL function blocks.

Input / Output Connections:
The SETTIME function block placement requires connections of two input pins (EN, TZ) and one output pin
(Q).

Description:
The SETTZOFF function block sets the current time zone offset for the real time clock
when the real time clock is set to UTC time. The time zone offset is set in minutes and
the ladder diagram uses this offset when using SETDTLOCAL and GETDTLOCAL to set
and read the local date time on the real time clock.The time zone offset is set by using a
variable to apply the value to the input. The enable (EN) must be true for the SETTZOFF
function to be enabled.

Example Circuit:

SETTZOFF

I/O Pin Type Integer Real Boolean Timer Active State
EN Input X Active True
Q Output X
TZ Input X

SETTZOFF

Related Functions: SETDATE, GETTIME, GETDATE, SETDTLOCAL, GETDTLOCAL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 514

Description:
The SHL function provides a left bit shift of the P1 input. The P2 input specifies the num-
ber of one-bit left shifts. If the enable (EN) is false, the function is disabled. If the enable
(EN) is true, the output (O) will be equal result of the left shifted input in integer form
(1..2..4..8..16..32). A shift left when the output is 32 will cause the output to be zero (bit is
shifted off). Zeros are always shifted on to the right side when a left shift occurs.

Input / Output Connections:
The SHL function block placement requires connections of 3 input pins (EN, P1, P2) and
two output pins (Q, O).

Example Circuit:

SHL

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X

P2 Input X

O Output X

Q Output X

SHL

Related Functions: SHR

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 515

Description:
The SHR function provides a right bit shift of the P1 input. The P2 input specifies the
number of one-bit right shifts. If the enable (EN) is false, the function is disabled. If the en-
able (EN) is true, the output (O) will be equal result of the right shifted input in integer form
(32..16..8..4..2..1). A shift right when the output is 1 will cause the output to be zero (bit is
shifted off). Zeros are always shifted on to the left side when a right shift occurs.

Input / Output Connections:
The SHR function block placement requires connections of 3 input pins (EN, P1, P2) and
two output pins (Q, O).

Example Circuit:

SHR

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X

P2 Input X

O Output X

Q Output X

SHR

Related Functions: SHL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 516

Description:
The SIN function provides the sine (O) from the input value (P1). The enable (EN) must be
true for the SIN function to be enabled. The Q output is true when the SIN function is en-
abled.

Input / Output Connections:
The SIN function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

SIN

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Sine of P1 Base Number

Related Functions: ASIN, ATAN, COS, TAN, ACOS

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 517

Description:
The SQRT function provides the square root (O) from the input value (P1). The enable (EN)
must be true for the SQRT function to be enabled. The Q output is true when the SQRT
function is enabled.

Input / Output Connections:
The SQRT function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

SQRT

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Square Root of P1 Base Number

Related Functions: EXP, EXPT, LOG, LN

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 518

Description:
The SR function acts as a set dominant bistable. If the set input (S) is true, the output (Q)
is true. A true on the reset (R) input sets the output (Q) to false only if the set (S) input is
also false.

Input / Output Connections:
The SR function block placement requires connections of two input pins (S,R) and one
output pin (Q).

Example Circuit:

Truth Table:

SR

I/O Pin Type Integer Real Boolean Timer Active State Other Details
R Input X
S Input X

Q Output X

SR

SET RESET Q Q RESULT
 0 0 0 0
 0 0 1 1
 0 1 0 0
 0 1 1 0
 1 0 0 1
 1 0 1 1
 1 1 0 1
 1 1 1 1

Related Functions: RS

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 519

Description:
The ST_FUNC function is a function block for using structured-text functions created in
EZ LADDER Toolkit. The ST_FUNC has only local variables and will not allow variables
(items) to pass from one ladder scan to another (ie: keeping track of a count). As this uses
less memory, it is ideal for using when scan-passing is not required as it uses less over-
head (memory). The Enable is used to enable the function and the Q output is active when

ST_FUNC

I/O Pin Type Integer Real Boolean Timer Active State Other Details
Enable Input X Active True

Q Output X True when EN is true

XX XX X X X X Input/Output Name & Type based
solely on User Structured Text

Function.

Related Functions: ST_FUNC_BLK

Example Circuit:

the function enable is true.

For understanding on Structured Text and how the ST_FUNC operates with structured text functions, refer to
Chapter 26 - Structured Text.

Input / Output Connections:

Before an ST_FUNC function may be used in a ladder diagram (called from a ladder diagram pro-
gram, certain criteria must be met. Refer to Chapter 26-Structured Text for this criteria.

Input and Output connections are based on the structured text functions you create in EZ LADDER (ST
Function Editor). The Enable and Q outputs are by default created.

ST_FUNC

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 520

Description:
The ST_FUNC_BLK function is a function block for using structured-text functions created
in EZ LADDER Toolkit. The ST_FUNC may use local or global variables and will allow vari-
ables (items) to pass from one ladder scan to another (ie: keeping track of a count). This
function uses more memory than the ST_FUNC function. The Enable is used to enable
the function and the Q output is active when the function enable is true.

ST_FUNC_BLK

Related Functions: ST_FUNC

Example Circuit:

For understanding on Structured Text and how the ST_FUNC_BLK operates with structured text functions,
refer to Chapter 26 - Structured Text.

Input / Output Connections:

Before an ST_FUNC function may be used in a ladder diagram (called from a ladder diagram pro-
gram, certain criteria must be met. Refer to Chapter 26-Structured Text for this criteria.

Input and Output connections are based on the structured text functions you create in EZ LADDER (ST
Function Editor). The Enable and Q outputs are by default created.

I/O Pin Type Integer Real Boolean Timer Active State Other Details
Enable Input X Active True

Q Output X True when EN is true

XX XX X X X X Input/Output Name & Type based
solely on User Structured Text

Function.

ST_FUNC_BLK

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 521

Description:
The SUB functions subtracts the P2 input from the P1 input. The output (O) is the result of
the subtraction. The enable (EN) must be true for the SUB function to be enabled. The Q
output is true when the SUB function is enabled.

Input / Output Connections:
The SUB function block placement requires connections of 3 input pins (EN, P1, P2) and
two output pins (Q, O).

Example Circuit:

SUB

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X X

P2 Input X X

O Output X X

Q Output X

SUB

Related Functions: ADD, MULT, DIV, ABS

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 522

Description:
The TAN function provides the Tangent (O) from the input value (P1). The enable (EN) must
be true for the TAN function to be enabled. The Q output is true when the TAN function is
enabled.

Input / Output Connections:
The TAN function block placement requires connections of two input pins (EN, P1) and two
output pins (Q, O).

TAN

Example Circuit:

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X Base Number
Q Output X
O Output X Tangent of P1 Base Number

Related Functions: ASIN, ATAN, COS, SIN, ACOS

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 523

Description:
The TIMER function converts the input (P) into an Timer output (O). The enable (EN)
must be true for the TIMER function to be enabled. The Q output is true when the TIMER
function is enabled. The O output is a representation of the P input value in milliseconds
(5=5ms, 1000=1 Second)

 In addition to converting an Integer or Real to a Timer, the Timer
 function block can be used to copy one timer to another.

Input / Output Connections:
The TIMER function block placement requires connections of two input pins (EN, P) and two output pins (Q,
O).

Example Circuit:

TIMER

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P Input X X X

O X

Q Output X

TIMER

Related Functions: INTEGER, REAL, BOOLEAN

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 524

Description:
The TIMERCOUNTER function block is used to read counter or timer values of the real
world inputs connected to the Timer / Counter Capture inputs (pins). The enable (EN)
must be true for the TIMERCOUNTER function to be enabled. The Q output is true when
the TIMERCOUNTER function is enabled. The CV output is the actual count or time
value (based on how the input is configured). The reset (R) input is used to reset the
counter or timer.

 Counter / Timer Capture inputs may be configured as Timers, Free Running Timers or Counters.
 The capture input(s) must be configured in the EZ LADDER Toolkits Target Settings prior to placing
 in the ladder diagram.

Input / Output Connections:
The TIMER function block placement requires connections of two input pins (EN, R) and two output pins (Q,
CV, HV, LV (based on type of counter timer configured).

Example Circuits:

TIMERCOUNTER

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
R Input X Active True Resets Counte/Timer

CV Output X Actual Count / Timer Value

Q Output X

HV Output X Time in ticks* Pulse is high
(Measuing Duty Cycle only)

LV Output X Time in ticks* Pulse is low
(Measuing Duty Cycle only)

*Each Tick would be 1/24MHz or 1/24,000,000

TIMERCOUNTER

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 525

Description:
The TOF (off delay timer / time delay on drop-out) is a programmable timer with a variable
turn-off time. When the input (IN) input is true, the output (Q) is true. When the input (IN)
sees a transition from true to false, the timer begins timing. When the elapsed time (ET)
is equal to the preset time (PT), the output (Q) de-energizes (goes false). When the input
(IN) sees a false to true to false transition, the timer is reset and begins timing again.

Input / Output Connections:
The TOF function block placement requires connections of two input pins (IN, PT) and two output pins (Q,
ET).

Example Circuit:

Timing Diagram:

TOF

I/O Pin Type Integer Real Boolean Timer Active State Other Details
IN Input X Falling Edge
PT Input X

ET X

Q Output X

TOF

0 Elapsed Time

IN

Q

ET

ET=PT

True / On

True / On

False / Off

False / Off

Related Functions: TON, TP

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 526

Description:
The TON (on delay timer / time delay on pick-up) is a programmable timer with a variable
turn-on time. When the input (IN) input is true, the timer begins timing. When the elapsed
time (ET) is equal to the preset time (PT), the output (Q) energizes (goes true). When the
input (IN) sees a true to false transition, the timer is reset and the output (Q) is de-ener-
gized (goes false).

Input / Output Connections:
The TON function block placement requires connections of two input pins (IN, PT) and two output pins (Q,
ET).

Example Circuit:

Timing Diagram:

TON

I/O Pin Type Integer Real Boolean Timer Active State Other Details
IN Input X Active True
PT Input X

ET X

Q Output X

TON

0 Elapsed Time

IN

Q

ET

ET=PT

True / On

True / On

False / Off

False / Off

Related Functions: TOF, TP

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 527

Description:
The TP (pulse timer) is a programmable one-shot timer with a variable turn-on time. When
the input (IN) input is true, the timer begins timing and the output (Q) is energized. When
the elapsed time (ET) is equal to the preset time (PT), the output (Q) de-energizes (goes
false). When the input (IN) goes from true to false, the timer is only reset if the elapsed
time (ET) is equal to the preset time (PT). If they are not equal, the reset will not occur
until they are equal (and IN must still be false).

Input / Output Connections:
The TP function block placement requires connections of two input pins (IN, PT) and two output pins (Q,
ET).

Example Circuit:

Timing Diagram:

TP

I/O Pin Type Integer Real Boolean Timer Active State Other Details
IN Input X Active True
PT Input X

ET X

Q Output X

TP

0 Elapsed Time

IN

Q

ET

ET=PT

True / On

True / On

False / Off

False / Off

Related Functions: TON, TOF

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 528

Description:
The UART_SET_PROPERTY function block allows for adjustment of certain UART
parameters from inside the ladder program. The enable (EN) must be true for the
UART_SET_PROPERTY function to be enabled. The Q output is true when the
UART_SET_PROPERTY function is enabled. The ER output provides an error code
should an error occur. The P is the input parameter to adjust.

A dialog box will automatically open when placing the UART_SET_PROPERTY func-
tion block. This dialog allows the selection of the UART and Property to adjust.

 The Baud Rate is the only adjustable parameter as of this release version of EZ LADDER Toolkit.

Input / Output Connections:
The UART_SET_PROPERTY function block placement requires connections of two input pins (EN, P) and
two output pins (Q, ER).

Example Circuit:

Dialog Box:

UART_SET_PROPERTY

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P Input X Parameter

ER X Error Out Code, (0) = No Error

Q Output X

UART_SET_PROPERTY

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 529

Description:
The UNLATCH coil is for use with the LATCH coil operates similar to the DIRECT COIL.
The UNLATCH coil will clear it’s latched counterpart (LATCH coil with same name). This will
cause the LATCH coil to de-energize. LATCH and UNLATCH coils work as pairs. Any bool-
ean variable can be used as a LATCH / UNLATCH coil.

Example Circuit:

UNLATCH (COIL) UNLATCH COIL

Related Functions: LATCH, DIRECT COIL, INVERTED COIL

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 530

Description:
The WEBSERVER_DATA function block is used in the ladder diagram as the interface
to communicate via the embedded webserver to web enabled devices accessing the
stored web files on the sd card. This function block allows for variables to be selected
that are to be sent / received via the webserver interface.

A dialog box will automatically open when placing the WEBSERVER_DATA function
block. This dialog allows the selection variables that may be accessed (read or written
to) in the ladder diagram from the webserver page (HTML/JSON) and smart devices conneted to the web
page via Ethernet or Wi-Fi.

 The WEBSERVER_DATA function block is only available after the WEBSERVER feature has been
 added to the Project Settings and configured for operation. Multiple WEBSERVER function blocks
 may be used in the ladder diagram.

 The WEBSERVER_DATA function block requires an active connection (Ethernet or Wi-Fi) for
 connecting to devices and develope web files to interact with the devices and the WEBSERVER_
 DATA function block. These files reside on the SD Card. Refer to Chapter 24 - Webserver for more
 information on the webserver features.

Input / Output Connections:
The WEBSERVER_DATA function block placement requires connections of one input pin (EN) and two out-
put pins (Q, TC). Additional parameters are required in the Webserver Data Group Properties dialog when
placing the WEBSERVER_DATA function block. See the Dialog Box section for the dialog box information.

When the EN (Enable) is true, the WEBSERVER_DATA function block is active and available for communi-
cation to /from the webserver on the SD Card. If the EN (Enable) is false, any data in the block cannot be
update or accessed to/from the webserver.

The TIC output changes each time the communication occurs between the WEBSERVER_DATA function
block and the webserver. This value can be monitored in the ladder diagram to identify when communica-
tions have occured.

Example Circuit:

WEBSERVER_DATA

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
Q Output X True when EN is true

TC Output X Current TIC (internal timer) count,
updated when Function block com-
municates with webserver page (s)

WEBSERVER_DATA

Continued Next Page------»

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 531

Dialog Box:

When placing the WEBSERVER_DATA function block, the Webserver Data Group properties window will
open automatically. This window is used to select variables (add and remove) that are used to communicate
to the webserver and configure the amount of access (read access, write access or both). The checkboxes
provide the amount of access. The edit variable and delete variable buttons are used to add and remove
variables from the dialog.

 Variables must already exist in the ladder diagram project before they can be selected using the
 WEBSERVER_DATA function block (added to).

Appendix A Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 532

Description:
The XOR functions provides a bitwise exclusive OR function of the P1 and P2 inputs. The
enable (EN) must be true for the XOR function to be enabled. The Q output is true when
the XOR function is enabled.

Input / Output Connections:
The XOR function block placement requires connections of 3 input pins (EN, P1, P2) and
two output pins (Q, O).

Example Circuit:

XOR

I/O Pin Type Integer Real Boolean Timer Active State Other Details
EN Input X Active True
P1 Input X

P2 Input X

O Output X

Q Output X

XOR

Related Functions: OR, AND, NOT

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 533

Appendix B
Target Specific ST Function Reference

This chapter provides information on using Target Specifi Structured Text Functions in EZ
LADDER Toolkit.

Chapter Contents
Target Specific Functions ...536

EZ_CAN_Reset ...537
EZ_CAN_Rx ..538
EZ_CAN_SetBitRate ...540
EZ_CAN_Status ..542
EZ_CAN_Tx ...544
EZ_Cell_ApplyPower ..546
EZ_Cell_Connect ..547
EZ_Cell_GetAPN ..549
EZ_Cell_GetICCD ..550
EZ_Cell_GetIMEI ...552
EZ_Cell_GetIPV4Addr ..554
EZ_Cell_GetModelName ...556
EZ_Cell_GetRegistration ...558
EZ_Cell_GetSignalStrength ...560
EZ_Cell_GetState ...562
EZ_DCCoAP_Activate ..564
EZ_DCCoAP_EnableInterface ...567
EZ_DCCoAP_EraseCIK ..569
EZ_DCCoAP_GetServerTime ..571
EZ_DCCoAP_GetState ...574
EZ_DCCoAP_ReadCIK ...575
EZ_DCCoAP_SendData ...577
EZ_DCCoAP_SendDataRecord ...580
EZ_DCCoAP_WriteCIK ...583
EZ_EEPromRead ...585
EZ_EEPromReadArray ..586
EZ_EEPromWrite ..588
EZ_EEPromWriteArray ..589
EZ_Eth_DHCPRelease ...591
EZ_Eth_DHCPRenew ...592
EZ_Eth_GetHostname ..593
EZ_Eth_GetIPV4Addr ...594

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 534

EZ_Eth_GetLinkActive ...596
EZ_Eth_SetEnableAutoIpV4 ..597
EZ_Eth_SetEnableDHCPIPV4 ..598
EZ_Eth_SetHostname ..599
EZ_Eth_SetStaticIPV4Addr ...600
EZ_FormatString ..602
EZ_FS_Close ..604
EZ_FS_Flush ...606
EZ_FS_Open ...608
EZ_FS_Read ...611
EZ_FS_ReadStr ..614
EZ_FS_Seek ..617
EZ_FS_Size ...619
EZ_FS_Truncate ...621
EZ_FS_Write ...623
EZ_FS_WriteStr ..625
EZ_GetBootloaderVersion ...627
EZ_GetKernelVersion ...629
EZ_GetLadderBuild ..631
EZ_GetLadderVersion ..632
EZ_GetSerialNumber ...634
EZ_GetTickCount ...635
EZ_GPIO_Init ..636
EZ_GPIO_Read ...637
EZ_GPIO_Write ...638
EZ_GPS_GetDateTimeUTC ..639
EZ_GPS_GetMovement ...641
EZ_GPS_GetPosition ...642
EZ_GPS_GetPrecision ...644
EZ_I2CReadData ...646
EZ_I2CWriteData ..648
EZ_KeypadGetKey ..650
EZ_LcdClear ...651
EZ_LcdDrawImage ..652
EZ_LcdDrawLine ...653
EZ_LcdDrawRectangle ...654
EZ_LcdDrawRectangleFilled ..655
EZ_LcdInit ...656
EZ_LcdSetFont ..657
EZ_LcdSetFontSize ...658
EZ_LcdSetPixel ...659
EZ_LcdWrite ...660
EZ_LcdWriteString ..661
EZ_ModbusMaster_UartEnableIsr ..662
EZ_MQTT_Connect ..663
EZ_MQTT_Publish ..665
EZ_MQTT_RECEIVE ...667
EZ_ResetTarget ..669

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 535

EZ_RTC_GETDTLOCAL ..670
EZ_RTC_GETDTUTC ...672
EZ_RTC_SETDTLOCAL ..673
EZ_RTC_SETDTUTC ...675
EZ_RTC_SETTZOFF ..677
EZ_ScanString ...679
EZ_SNTP_START ..681
EZ_SNTP_STOP...682
EZ_SpiWriteData ..684
EZ_TimeDateCalendarToUnix ...687
EZ_TimeDateUnixToCalendar ...689
EZ_UartEnableIsr ...691
EZ_UartGetBytesToRead ...692
EZ_UartIsTxFinished ..693
EZ_UartRead ...694
EZ_UartSetBaudRate ...696
EZ_UartWrite ...698
EZ_UartWriteStr ..700
EZ_WiFi_Get_Access_Points ..702
EZ_WiFi_GetChannel ...705
EZ_WiFi_Get_Connection_Status_1 ..707
EZ_WiFi_Get_Connection_Status_2 ..710
EZ_WiFi_Get_Mode ...713
EZ_WiFi_Get_Passcode ..715
EZ_WiFi_Get_Security ...718
EZ_WiFi_Get_SSID ...721
EZ_WiFi_Set_Channel ...724
EZ_WiFi_Set_Mode ...726
EZ_WiFi_Set_Passcode ...728
EZ_WiFi_Set_Security ...731
EZ_WiFi_Set_SSID ...734
EZ_WiFi_Soft_Reset ..737

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 536

Target Specific Functions
Target specific structured text functions are functions used in structured text that apply to specific hardware
features such as Ethernet, Wi-Fi or cellular. These features are only available on certain controllers (hard-
ware targets, and these functions for accessing these features are only available on supported hardware.

Target specific functions are not standard functions in structured text and as such are specific to EZ LAD-
DER toolkit and only available on supported hardware

Most of the Target Specific functions are found in the structured text editor in the Target Specific Functions
tab (2nd tab), though some may be found in the Std Functions Tab (1st tab). Organization and location is
based on how broad the feature is supported across targets.

Regardless of the location, all Target specific functions, begin with EZ_ (exampe: EZ_GPIO_Write).

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 537

EZ_CAN_Reset

Summary:

The EZ_CAN_Reset function causes the on-board CAN (Controller Area Network) controller to reset and re-initialize
with the CAN setting found in the Project Settings.

Description:

FileDescriptor FD_CANx for the CAN port controller to reset. x is the CAN port number. This file descriptor is
 found with other file descriptors (FD) in the structured text editor (Variables tab at the bottom).
 Hard-coded or use DINT variable.

Format:
EZ_CAN_Reset(FileDescriptor);

The EZ_CAN_Reset function is reset the on-board CAN controller and re-initialize with the CAN settings in the Project
Settings. Refer to Chapter 14 - CAN Networking for more details on CAN communications and Project Settings.

 This function can be used at anytime to reset / re-initialize the on-board CAN controller. Often it is used Native
 CAN Communications (CAN communications at the raw frame level).

Arguments:

FUNCTION_BLOCK ResetCAN
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 IF (Enable = TRUE) AND (LastEn = FALSE) THEN

 EZ_CAN_Reset(FD_CAN0);
 LastEn := TRUE;

 END_If;

 If (Enable = FALSE) then
 LastEn := FALSE;
 END_IF;

 Q := Enable;

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 538

EZ_CAN_Rx

Summary:

varDINT DINT. Returns status of function.
 Negative Number for error
 0 when no message has been received
 1 message has been received
FileDescriptor FD_CANx for the CAN port controller to use. x is the CAN port number. This file descriptor is
 found with other file descriptors (FD) in the structured text editor (Variables tab at the bottom).
 Hard-coded or use DINT variable.
rtrflag BOOL. Remote Transmission request flag. Identifies when a remote tranmission request has
 been received. Most often this is zero.
extFrame BOOL. Extended frame flag. False (0) for 11-bit CAN id, True (1) for 29-bit CAN id.
ID UDINT. CAN PGN number to receive data from.
data ARRAY OF USINT. Used as a buffer to store the received data into.
length UDINT. Number of bytes received.

Format:
varDINT:=EZ_CAN_Rx(FileDescriptor, rtrflag, extFrame, ID, data, length);

The EZ_CAN_Rx function is to receive Native CAN Communications via a CAN port. Refer to Chapter 14 - CAN
Networking for more details on CAN communications and Native CAN Communications.

 This function as others with Native CAN Communications allow for sending / receiving CAN data at the raw
 frame level. Using these functions requires knowledge of CAN communications and CAN frame construction.

Arguments:

The EZ_CAN_Rx function is used to receive CAN data (Native CAN communications) at the raw frame level. Using the
selected CAN port (FileDescriptor), the function will listen for message(s) from the specific PGN (ID) and store the data
received in the data variable provided. The other communications flags are required to identify the type of CAN com-
munications. Length and rtrflag are returned as well as the status of the function (varDINT) to identifty when messages
are received.

Description:

FUNCTION_BLOCK RX_CAN
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 VAR
 rtr : BOOL; (* Remote Transmission Request flag *)
 extFrame : BOOL; (* This is a flag if the frame coming in is a 11 bit or 29 bit identifier*)
 id : udint; (*This is the PGN number *)
 data : array[0..7] of USINT; (* the length and type of array to store the CAN bytes *)
 rdCnt : udint; (* Number of bytes received*)
 Err1 : bool; (* return state of the RX command *)
 Infomation : dint; (* Varible to hold data frm parsed received message*)
 Measure_temp : real; (* Varible to hold data frm parsed received message*)

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 539

 END_VAR

 if(Enable) then

 Err1 :=EZ_CAN_Rx(FD_CAN0, rtr, extFrame, id, data, rdCnt); (*"FD_CAN" is the file directory*)

 IF (id = 16#2C4)then (* IF the recived data array has this as the id/PGN then parse the bytes to
these Variables*)

 Infomation := TO_LSB_UDINT(data ,16#0); (* The first 4 Bytes of the data array is stored in a
Udint variable .*)

 Measure_temp := INT_TO_REAL (TO_LSB_INT(data ,16#4)) * 10.0; (*the next two bytes start-
ing at 4 stored in a LSB INT and then a INT to real conversion *)

 end_if;

 Q := Enable;

 end_if;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 540

EZ_CAN_SetBitRate

Summary:

varDINT DINT. Returns status of function.
 Negative Number for error
 0 for success
FileDescriptor FD_CANx for the CAN port controller to use. x is the CAN port number. This file descriptor is
 found with other file descriptors (FD) in the structured text editor (Variables tab at the bottom).
 Hard-coded or use DINT variable.
prescale DINT. Baud Rate Presecale
tseg1 DINT. Time Segment 1.
tseg2 DINT. Time Segment 2.
sjw DINT. Synchronization Jump Width.
numsamples DINT. Number of Samples

Format:
varDINT:=EZ_CAN_SetBitRate(FileDescriptor, prescale, tseg1, tseg2, swj, numsamples);

The EZ_CAN_SetBitRate function is to configure CAN port bit (baud) rate. When used, this function would affect all
communications on the CAN port. It would typically be used with Native CAN Communications via a CAN port. Refer
to Chapter 14 - CAN Networking for more details on CAN communications and Native CAN Communications.

 Using this functions requires knowledge of CAN communications and CAN frame construction.

 This function should only be used with a high level of knowledge of CAN communications and message
 structure (or under direct consultation from Divelbiss). Use of this function without proper understanding of
 CAN communications, may result in undesired operation of the CAN network.

Arguments:

The EZ_CAN_SetBitRate function is used to the CAN port settings for communications (bit rate, etc). This should typi-
cally be used with Native CAN communications as J1939, NMEA 2000 and OptiCAN are bit rates are configured in the
Project Settings (SEE WARNING ABOVE).

 For P-Series PLC on a Chip targets, the CAN clock rate is 96 MHz. This frequency must be known when using
 the function.

 To set 250K bit rate, the function would look like: var:=EZ_CAN_SetBitRate(fd, 24, 13, 2, 1, 1);
 To set 250K bit rate, the function would look like: var:=EZ_CAN_SetBitRate(fd, 12, 13, 2, 1, 1);

Description:

FUNCTION_BLOCK FB_SetBitrate
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 541

 Q := Enable;

 if(NOT lastEn AND Enable) then (* on the rising edge or enable*)
 EZ_CAN_SetBitRate(FD_CAN0, 24, 13, 2, 1, 1);
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 542

EZ_CAN_Status

Summary:

varUDINT UDINT. Returns status of function.
 0 for No Error
 If the status is not zero, then mutiple errors can be set at the same time as they are bit
 flags. The status would need to be BITWISE ANDed with each value below to identify
 if that specific flag (error bit) is set.
 Rx Warning : 1 (BITWISE AND varUDINT with 1)
 Rx Error : 1 (BITWISE AND varUDINT with 2)
 Tx Warning : 1 (BITWISE AND varUDINT with 4)
 Tx Error : 1 (BITWISE AND varUDINT with 8)
 Bus Error : 1 (BITWISE AND varUDINT with 16)
 Bus Off : 1 (BITWISE AND varUDINT with 32)
 Data Overrun : 1 (BITWISE AND varUDINT with 64)
FileDescriptor FD_CANx for the CAN port controller to use. x is the CAN port number. This file descriptor is
 found with other file descriptors (FD) in the structured text editor (Variables tab at the bottom).
 Hard-coded or use DINT variable.
txErrors DINT. Transmit Error Count
rxErrors DINT. Receive Error Count.

Format:
varUDINT:=EZ_CAN_Status(FileDescriptor, txErrors, rxErrors);

The EZ_CAN_Status function is to query and get the current status of an on-board CAN controller. It would typically
be used with Native CAN Communications to determine status, but the function does operate with J1939, NMEA
2000 and OptiCAN. Refer to Chapter 14 - CAN Networking for more details on CAN communications and Native CAN
Communications.

 This function returns information from the on-board CAN controller status. Understanding the status of a CAN
 controller requires knowledge of CAN communications and conditions that may be seen on network bus.

Arguments:

The EZ_CAN_Status function is used read the status of the on-board CAN controller. This function returns errors if any
are seen and has bit flags that can be masked to identify the type of error. Receive and Transmist error counters are
also returned.

 This function is useful to monitor the status of the CAN network (especially for Native CAN communications)
 and then take appropriate action based on the type of errors such as restarting the controller, resetting the CAN
 controller, etc.

Description:

FUNCTION_BLOCK FB_Status
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 stat : udint;
 txErr : dint;
 rxErr : dint;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 543

 lastEn : bool;
 END_VAR;

 Q := Enable;

 stat := EZ_CAN_Status(FD_CAN0, txErr, rxErr);

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 544

EZ_CAN_Tx

Summary:

varDINT DINT. Returns status of function.
 Negative Number for error
 Greater than 0 Message has been added to the CAN port's transmit buffer with the
 number returned being the number of bytes sent.
FileDescriptor FD_CANx for the CAN port controller to use. x is the CAN port number. This file descriptor is
 found with other file descriptors (FD) in the structured text editor (Variables tab at the bottom).
 Hard-coded or use DINT variable.
rtrflag BOOL. Remote Transmission request Identifies when a remote tranmission request has
 been received. Most often this is zero. Set to '1' or true for remote transmission request.
extFrame BOOL. Extended frame flag. False (0) for 11-bit CAN id, True (1) for 29-bit CAN id.
ID UDINT. CAN PGN number to transmit data as.
data ARRAY OF USINT. Variable of data to send. Up to 8 bytes can be transmitted in a single
 frame.
length UDINT. Number of bytes to transmit. This number must be greater than or equal to 0 and less
 than or equal to 8.

Format:
varDINT:=EZ_CAN_Tx(FileDescriptor, rtrflag, extFrame, ID, data, length);

The EZ_CAN_Tx function is to transmit Native CAN Communications via a CAN port. Refer to Chapter 14 - CAN
Networking for more details on CAN communications and Native CAN Communications.

 This function as others with Native CAN Communications allow for sending / receiving CAN data at the raw
 frame level. Using these functions requires knowledge of CAN communications and CAN frame construction.

Arguments:

The EZ_CAN_Tx function is used to transmit CAN data (Native CAN communications) at the raw frame level. Using the
selected CAN port (FileDescriptor), the function will load messages into the CAN transmit buffer from the data variable
provided (to send on the CAN network) using the provided ID (PGN). The other communications flags are required to
identify the type of CAN communications and size of the message : extFrame, rtrflag and length.

Description:

FUNCTION_BLOCK FB_TX_CAN
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 cnt : dint; (* Number of bytes sent to buffer *)
 rtr : BOOL := false; (* RTR = Remote Frame Flag *)
 extFrame : BOOL := true; (*FLAG to set, if you are sending an 11 bit or a 29 bit identifier message*)
 id : udint; (*PGN*)
 data : array[0..7] of USINT;
 wrCnt : udint; (*Number of bytes to write/TX *)
 str : string[30]; (*Not used here, but could sent as a string *)

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 545

 lastEn : bool;
 END_VAR

 Q := Enable;

 if(NOT lastEn AND Enable) then
 wrCnt := 8;
 data[0] := 8; (*First byte of data in the array is 8*)
 data[1] := 7; (*First byte of data in the array is 7*)
 data[2] := 6; (* ect...*)
 data[3] := 5;
 data[4] := 4;
 data[5] := 3;
 data[6] := 2;
 data[7] := 1;

 (*cnt := EZ_CAN_Rx(FD_CAN0, rtr, extFrame, id, data, rdCnt);*) (* This is the format example *)
 cnt := EZ_CAN_Tx(FD_CAN1, rtr, extFrame, 16#5678, data, wrCnt);

 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 546

EZ_Cell_ApplyPower

Summary:

FUNCTION_BLOCK CellModemPower
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 EZ_Cell_ApplyPower(Enable); (*Power Cellular data modem on if Enable is true*)

 Q := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_Cell_Activate function controls the On / Off power control circuit for the on-board cellular data modem (CDM).
The INTvar return variable returns a 0 for No Error or a negative number for errors. See list above. The variable Pow-
erBool controls the state (0 for off / no power , 1 for on / powered). When powering the CDM on, there will be a delay
before the CDM features are operational. See Chapter 27 - Cellular Connectivity.

Description:

INTvar Function return holding variable (INT). Returns the status of the function's activity (optional).
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.
PowerBool Control state for modem power (0 = Off / not powered, 1 = On / powered) (BOOL).

Format:
INTvar := EZ_Cell_ApplyPower(PowerBool); or EZ_Cell_ApplyPower(PowerBool);

The EZ_Cell_ApplyPower function is to control the power of the on-board cellular data modem (CDM). This function
directly controls the on/off power circuit to the cellular data modem.

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 547

EZ_Cell_Connect

Summary:

FUNCTION_BLOCK CellModemConnection
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEnable : bool; (*Used for rising edge detect*)
 END_VAR

 IF (Enable = true and lastEnable = false) THEN (*Look for rising edge only*)
 EZ_Cell_Connect(true); (*On rising edge, connect to network*)
 ELSE IF (Enable = false) THEN
 EZ_Cell_Connect(false); (* Enable = false then disconnect*)
 END_IF;
 END_IF;

Example:

The EZ_Cell_Connect function controls the connection of cellular data modem (CDM) to the cellular network. The
INTvar return variable returns a 0 for No Error or a negative number for errors. See list above. The variable StateBool
controls the state of the connection to the network (0 for disconnect, 1 for connect). Refer to Chapter 27 - Cellular
Connectivity for a generic flow chart and descriptions on using the cellular data modem. The cellular data modem
state (using EZ_Cell_GetState) must be IDLE and good registration (using EZ_Cell_GetRegistration) and acceptable
signal strength (using EZ_Cell_GetSignalStrength) for successful implementation of this function (the cellular data
modem must be powered on and in an IDLE state for this command to function or an error will occur. Power is
applied using the EZ_Cell_ApplyPower function).

Description:

INTvar Function return holding variable (INT). Returns the status of the function's activity (optional).
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.
StateBool Control state for connect / disconnect (0 = disconnect, 1 = connect) (BOOL).

Format:
INTvar := EZ_Cell_Connect(StateBool); or EZ_Cell_Connect(StateBool);

The EZ_Cell_Connect function is to control the cellular data modem (CDM) to connect to the cellular network or discon-
nect from the cellular network.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 548

 lastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 549

EZ_Cell_GetAPN

Summary:

INTvar Function return holding variable (INT). Function return holding variable (INT). Returns the
 status of the function's activity (optional). This must be converted to a DINT before it can
 exported from structured text to the ladder diagram. The CDM cell state must be IDLE to use
 this function.
 0 No Error
 Non 0 Error

IDstring The string variable to store the APN into. The variable string length must be declared with a
 large enough size for the ID size (length). On success, the IDstring will contain
 the APN.

Format:
INTvar := EZ_Cell_GetAPN(IDstring)

The EZ_Cell_GetAPN function is to read the Access Point Name of the device's cellular data modem. This name can
be useful when creating a gateway between youir carrier's cellular network and the public internet.

Arguments:

The EZ_Cell_GetIAPN communicates to the CDM (cellular data modem). The INTvar return variable returns a 0 for No
Error or a non-zero number for errors. The variable IDstring returns the value of the Access Point Name (APN).

 Refer to Chapter 27 - Cellular Connectivity for a generic flow chart and descriptions on using the cellular
 data modem. The cellular data modem state (using EZ_Cell_GetState) must be IDLE (the cellular data
 modem must be powered on and in an IDLE state for this command to function or an error will occur. Power is
 applied using the EZ_Cell_ApplyPower function).

Description:

FUNCTION_BLOCK RdAPN
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 ID : string[30];
 Rtn: int;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 if(Enable = True) AND (lastEn = False) then

 Rtn:= EZ_Cell_GetIAPN(ID);

 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 550

EZ_Cell_GetICCD

Summary:

FUNCTION_BLOCK RdSIMcardID
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 ID : string[30];
 Rtn: int;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 if(Enable = True) AND (lastEn = False) then

Example:

The EZ_Cell_GetICCD communicates to the CDM (cellular data modem). The INTvar return variable returns a 0 for No
Error or a negative number for errors. See list above. The variable IDstring returns the value of the CDM SIM card se-
rial number / ID.

 Refer to Chapter 27 - Cellular Connectivity for a generic flow chart and descriptions on using the cellular
 data modem. The cellular data modem state (using EZ_Cell_GetState) must be IDLE (the cellular data
 modem must be powered on and in an IDLE state for this command to function or an error will occur. Power is
 applied using the EZ_Cell_ApplyPower function).

Description:

INTvar Function return holding variable (INT). Function return holding variable (INT). Returns the
 status of the function's activity (optional). This must be converted to a DINT before it can
 exported from structured text to the ladder diagram. The CDM cell state must be IDLE to use
 this function.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.

IDstring The string variable to store the SIM card identification into. The variable string length must be
 declared with a large enough size for the ID size (length). On success, the IDstring will contain
 the SIM card serial number / ID.

Format:
INTvar := EZ_Cell_GetICCD(IDstring)

The EZ_Cell_GetICCD function is to read the cellular 4G SIM card Identififcation.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 551

 Rtn:= EZ_Cell_GetICCID(ID);

 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 552

EZ_Cell_GetIMEI

Summary:

FUNCTION_BLOCK CellIMEI
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 complete : BOOL := FALSE;
 buffer : string[100];
 IMEI : string[15];
 result : int;
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE))THEN (*Check for rising edge*)

Example:

The EZ_Cell_GetIMEI function retrieves the IMEI (cellular data modem's identification number) The INTvar return vari-
able returns a 0 for No Error or a negative number for errors. See list above. The variable IMEIstring (STRING) holds
the IMEI data.

Refer to Chapter 27 - Cellular Connectivity for a generic flow chart and descriptions on using the cellular data mo-
dem.

Description:

INTvar Function return holding variable (INT). Returns the status of the function's activity (optional).
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.
IMEIstring Cellular data modem IMEI number (identification number). Should be at 15 bytes to prevent
 being truncated. (STRING)

Format:
INTvar := EZ_Cell_GetIMEI(IMEIstring); or
 EZ_Cell_GetIMEI(IMEIstring);

The EZ_Cell_GetIMEI function returns the cellular data modem's identification number. IMEI numbers are hard coded
to the cellular data modem and cannot be changed. This function is used for all 4G Cellular Data Modems (see target
information for modem type).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 553

 result := EZ_Cell_GetIMEI(IMEI); (*Get IMEI from 4G Cellular Data Modem*)
 IF (result = 0) THEN
 (* Print IMEI to Serial Port *)
 EZ_FormatString(buffer, 'IMEI: ');
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;
 end_while;
 while EZ_UartWriteStr(FD_UART2,IMEI) <= 0 do
 ;
 end_while;
 (* Print Carriage Return and Line Feed *)
 EZ_FormatString(buffer, '$N');
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;
 end_while;
 END_IF;

 complete := TRUE;

 END_IF;

 IF (Enable = FALSE) THEN
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 554

EZ_Cell_GetIPV4Addr

Summary:

FUNCTION_BLOCK CellModemGetIPV4Addr
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 IP1: DINT;
 IP2: DINT;
 IP3: DINT;
 IP4: DINT;
 END_VAR

Example:

The EZ_Cell_GetIPV4Addr function returns the IP address information of the cellular data modem on the cellular net-
work. The INTvar return variable returns a 0 for No Error or a negative number for errors. See list above. The variable
OurIP (array of BYTE) holds the IP address, the variable Netmask (array of BYTE) holds the subnet, the variable DNS1
(array of BYTE) holds the DNS1 address, the variable DNS2 (array of BYTE) holds the DNS2 address. This function is
only valid when the CDM is connected to the cellular network (connect using EZ_Cell_Connect and verify connected
using EZ_Cell_GetState).

Refer to Chapter 27 - Cellular Connectivity for a generic flow chart and descriptions on using the cellular data mo-
dem.

Description:

INTvar Function return holding variable (INT). Returns the status of the function's activity (optional).
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.
OurIP Cellular data modem IP address (4 Bytes or more total) (ARRAY[] of BYTE).
Netmask Cellular data modem subnet address (4 Bytes or more total) (ARRAY[] of BYTE).
DNS1 Cellular data modem DNS1 address (4 Bytes or more total) (ARRAY[] of BYTE).
DNS2 Cellular data modem DNS2 address (4 Bytes or more total) (ARRAY[] of BYTE).

Format:
INTvar := EZ_Cell_ApplyPower(OurIP,Netmask,DNS1,DNS2); or
 EZ_Cell_ApplyPower(OurIP,Netmask,DNS1,DNS2);

The EZ_Cell_GetIPV4Addr function returns the IP Address of the cellular data modem (CDM) from the cellular network.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 555

 VAR
 enableLast : bool;
 OURIP : ARRAY[0..3] OF BYTE;
 NETMASK : ARRAY[0..3] OF BYTE;
 DNS1 : ARRAY[0..3] OF BYTE;
 DNS2 : ARRAY[0..3] OF BYTE;
 END_VAR

 IF ((Enable = TRUE) AND (enableLast = FALSE)) THEN (*Detect rising edge*)

 EZ_Cell_GetIpV4Addr(OURIP,NETMASK,DNS1,DNS2); (*Get IP Info*)

 IP1 := OURIP[0]; (*Output IP only to ladder diagram*)
 IP2 := OURIP[1];
 IP3 := OURIP[2];
 IP4 := OURIP[3];

 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 556

EZ_Cell_GetModelName

Summary:

FUNCTION_BLOCK RdCDMname
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 MdlName : string[30];
 Rtn: int;
 END_VAR
 VAR_OUTPUT
 Q : bool;

Example:

The EZ_Cell_GetModelName communicates to the CDM (cellular data modem). The INTvar return variable returns a 0
for No Error or a negative number for errors. See list above. The variable Modelstring returns the value of the cellular
modem name:

 Refer to Chapter 27 - Cellular Connectivity for a generic flow chart and descriptions on using the cellular
 data modem. The cellular data modem state (using EZ_Cell_GetState) must be IDLE (the cellular data
 modem must be powered on and in an IDLE state for this command to function or an error will occur. Power is
 applied using the EZ_Cell_ApplyPower function).

Description:

INTvar Function return holding variable (INT). Function return holding variable (INT). Returns the
 status of the function's activity (optional). This must be converted to a DINT before it can
 exported from structured text to the ladder diagram. The CDM cell state must be IDLE to use
 this function.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.

Modelstring The string variable to store the CDM model name into. The variable string length must be
 declared with a large enough size for the ID size (length). On success, the Modelstring will
 contain the cellular data modem's name.

 At this manuals release, the following are valid CDM names: LE910-SVG, LE910-SV1,
 HL7618RD, HE910-D. Only supported CDMs may be used with P-Series targets.

Format:
INTvar := EZ_Cell_GetModelName(Modelstring)

The EZ_Cell_GetModelName function is to read the cellular modem (CDM) model name.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 557

 END_VAR

 if(Enable = True) AND (lastEn = False) then

 Rtn:= EZ_Cell_GetModelName(MdlName);

 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 558

EZ_Cell_GetRegistration

Summary:

FUNCTION_BLOCK CellModemReg
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RG: DINT;
 END_VAR
 VAR
 result : INT;
 registration : DINT;

Example:

The EZ_Cell_GetRegistration function returns the registration for how the cellular data modem would connect to the
cellular network. The INTvar return variable returns a 0 for No Error or a negative number for errors. See list above.
The variable RegDINT (DINT) holds the registration value (see list above).

Refer to Chapter 27 - Cellular Connectivity for a generic flow chart and descriptions on using the cellular data mo-
dem. The cellular data modem state (using EZ_Cell_GetState) must be IDLE for successful implementation of this
function.

Description:

INTvar Function return holding variable (INT). Returns the status of the function's activity (optional).
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.
RegDINT Registration value for how CDM would connect to cellular network.
 0 Not Registered
 1 Registered Home
 2 Not Registered - Searching
 3 Registration Denied
 4 Unknown
 5 Registered Roaming

Format:
INTvar := EZ_Cell_GetRegistration(RegDINT); or
 EZ_Cell_GetRegistration(RegDINT);

The EZ_Cell_GetRegistration function returns the cellular data modem's current registration (how it would connect to a
cellular network).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 559

 END_VAR

 IF ((Enable = TRUE))THEN (*Check for Enable*)

 (* Modem Registration *)
 result := EZ_Cell_GetRegistration(registration); (*Get registration*)
 IF (result = 0) THEN
 RG := registration; (*Set output value based on return*)
 ELSE
 RG := result;
 END_IF;

 END_IF;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 560

EZ_Cell_GetSignalStrength

Summary:

FUNCTION_BLOCK CellSigStr
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 SS: DINT;
 END_VAR
 VAR
 sigStr : DINT;
 result : INT;
 END_VAR

Example:

The EZ_Cell_GetSignalStrength function returns the signal strength of the cellular network signal to the cellular data
modem. The INTvar return variable returns a 0 for No Error or a negative number for errors. See list above. The vari-
able SSDINT (DINT) holds the signal strength value (see list above).

Refer to Chapter 27 - Cellular Connectivity for a generic flow chart and descriptions on using the cellular data mo-
dem. The cellular data modem state (using EZ_Cell_GetState) must be IDLE for successful implementation of this
function.

Description:

INTvar Function return holding variable (INT). Returns the status of the function's activity (optional).
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.
SSDINT Signal Level of cellular data modem to the cellular network.
 0 (-113) dBm or less
 1 (-111) dBm
 2-30 (-109) dBm to (-52) dBm / 2 per step
 31 (-51) dBm or greater
 99 Not known or not detectable

Format:
INTvar := EZ_Cell_GetSignalStrength(SSDINT); or
 EZ_Cell_GetSignalStrength(SSDINT);

The EZ_Cell_GetSignalStrength function returns the cellular data modem's current signal strength of the cellular net-
work signal.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 561

 IF ((Enable = TRUE))THEN (*check for Enable to be true*)

 (* Signal Strength *)
 result := EZ_Cell_GetSignalStrength(sigStr); (*Get Signal Strength*)
 IF (result = 0) THEN (*Set output value if result is no error*)
 SS := sigStr;
 ELSE
 SS := result;
 END_IF;

 END_IF;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 562

EZ_Cell_GetState

Summary:

FUNCTION_BLOCK CellModemStatus
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 ST: DINT;
 END_VAR
 VAR
 state : DINT;
 result : INT;

Example:

The EZ_Cell_GetState function returns the current state (status) of the cellular data modem. The INTvar return variable
returns a 0 for No Error or a negative number for errors. See list above. The variable StateDINT (DINT) holds the cur-
rent state value (see list above). Refer to Chapter 27 - Cellular Connectivity for a generic flow chart and descriptions
on using the cellular data modem.

Description:

INTvar Function return holding variable (INT). Returns the status of the function's activity (optional).
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 0 No Error
 -1 Null Pointer (Contact Divelbiss for more information)
 -2 Initialization Failed (Contact Divelbiss for more information)
 -3 Cellular Modem state was not IDLE. Must be IDLE to use this function.
 -4 No Connection. A connection could not be made to the cellular network.
 -5 Invalid Registration (Wait for registration value to = 1 for HOME or 5 for roaming)
 -6 Undefined (Contact Divelbiss for more information)
 -7 Signal Strength too low. Retry after better signal strength is detected.
 -8 Cellular Data Modem is not powered on. Use EZ_Cell_ApplyPower function.
 -9 Not Supported. This function is not supported by the target hardware.
StateDINT Signal Level of cellular data modem to the cellular network.
 0 Off - Not Powered
 1 Powering Up
 2 Idle
 3 Starting / Attempting Connection to cellular the network
 4 Connected to the cellular network
 5 Stopping / Disconnecting from the cellular network
 6 Activating. Activating the cellular data modem on the cellular network.
 7 Deactivating. Deactivating the cellular data modem from the cellular network.
 8 Error. Requires cycling modem power (off / on) to clear this error state.

Format:
INTvar := EZ_Cell_GetState(StateDINT); or
 EZ_Cell_GetState(StateDINT);

The EZ_Cell_GetState function returns the cellular data modem's current operational state.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 563

 END_VAR

 IF ((Enable = TRUE))THEN (*Check for Enable to be True*)

 (* Modem State *)
 result := EZ_Cell_GetState(state); (*Get Cellular data modem state*)
 IF (result = 0) THEN
 ST := state; (*If result is no error then update output*)
 ELSE
 ST := result;
 END_IF;

 END_IF;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 564

EZ_DCCoAP_Activate

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 -1 = Error
 0 = Not Used
 1 = Queued to Send
 2 = Sending
 3 = Completed
Response Response code from DCCoAP cloud Server (DINT). When the function status (Statvar) is
 equal to 3 (complete) or -1 (error), this variable will return an additional response code with
 more detail regarding the communications.

Format:
Statvar := EZ_DCCoAP_Activate(Response);

The EZ_DCCoAP_Activate function is used to activate the target (device) on a DCCoAP Cloud server. This may or may
not be required only once per device based on the DCCoAP server(unless it has been removed / deactivated from the
server).

Arguments:

For Statvar = -1 (Error)
 Error Error Codes Description
 None 0 No Error
 LWIP -1 Contact Divelbiss Support for this error.
 No Connection -3 Unable to make a connection to the DCCoAP cloud server. Check connections.
 Already Activated -4 Device has already been activated on the DCCoAP cloud server. Contact Divelbiss
 support for more information.
 Activation Failed -5 The activation for this device failed on the DCCoAP cloud server. Contact Divelbiss
 support for more information.
 Null Pointer -6 Contact Divelbiss Support for this error.
 Invalid String -7 Contact Divelbiss Support for this error.
 Queue is Full -8 The send / receive queue is full. Evaluate the amount and frequency of data being
 transmitted to the DCCoAP cloud server.
 Not Idle -9 Contact Divelbiss Support for this error.
 Other Error -10 Other unspecified error. Contact Divelbiss Support for this error.
 Not Activated -11 The device is trying to communicate to the DCCoAP cloud server but has not been
 activated on the server.
 Time-out -20 A communications time-out occurred. Check your network and settings (Wi-Fi,
 Ethernet).
Statvar =3 (No Error) Response Codes
When the function has completed without an error, it will return one of the Response codes. This code returned is built
with 8 total bits.These bits are divided with the 3 upper bits being the response code before the ‘.’ shown below and the
5 lower bits representing the two digits after the ‘.’ shown below. A conversion would be necessary to use this response
code. Typical response codes would be 69 or 129 (shown in red). Contact Divelbiss support for addtional codes.

 Response Converted Code Description
 65 2.01 Created
 68 2.04 Changed
 69 2.05 Content was received.

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 565

FUNCTION_BLOCK DCCoAPCldActivate
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 S : DINT;
 R : DINT;
 END_VAR
 VAR
 complete : BOOL := FALSE;
 buffer : string[100];
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE))THEN

 S := EZ_DCCoAP_Activate(R);

 IF (S < 0) THEN
 (* Error occured when sending *)
 (* Determine what to do. Retry or abort. Up to user. *)
 EZ_FormatString(buffer, 'Did not communicate to server. Error %d. $N', R);
 complete := TRUE;

 ELSIF (S = 3) THEN
 (* Completed Transmission - Check errors*)

 IF (R = 69) THEN
 (* Completed and successful*)
 EZ_FormatString(buffer, 'Successfully activated device. $N');

Example:

The EZ_DCCoAP_Activate function attempts communications with the DCCoAP cloud server to register the device
(target) to the DCCoAP cloud server / portal. Devices may or may not be required to be activated on a DCCoAP cloud
server / portal before the device and server can communicate data. If required, each device needs only be activated
to the portal one time (unless it is removed from the portal. Requirement for activation is based on the DCCoAP cloud
server implementation.

As this function communicates to the DCCoAP cloud server, it must be 'polled' until the Statvar variable returns a status
of the communciations process -1 (for error) or 3 (for completed). With an error or completed Statvar, the Response
variable will return the details of the device to server communciations (see previous list of errors or if completed). Even
though communciation may have been completed successfully, the Response code may still represent an issue with
activation process to the DCCoAP cloud server (see list of responses and errors listed previously based on Statvar.

A Response code of 68 or 69 would signify the device was activated successfully.

Description:

 95 2.31 Continue
 129 4.01 Unauthorized - The CIK couldn’t be used to authenticate.
 130 4.02 Bad Option
 131 4.03 Forbidden
 132 4.04 Not Found
 136 4.08 Request Entity Incomplete
 140 4.12 Precondition Failed

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 566

 ELSE
 (* Completed but error code from server*)
 EZ_FormatString(buffer, 'Communicated to server but error activating device. Error
code %d.%02d $N', SHR(R,5), (R AND 2#11111));
 END_IF;

 complete := TRUE;
 END_IF;

 IF (complete = TRUE) THEN
 (* Print result *)
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;
 end_while;
 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 S := 0;
 R := 0;
 complete := FALSE;
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 567

EZ_DCCoAP_EnableInterface

Summary:Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 0 None No Error
 -1 LWIP Contact Divelbiss Support for this error.
 -3 No Connection Unable to make a connection to the DCCoAP cloud server. Check
 connections.
 -4 Already Activated Device has already been activated on the DCCoAP cloud server.
 Contact Divelbiss support for more information.
 -5 Activation Failed The activation for this device failed on the DCCoAP cloud server.
 Contact Divelbiss support for more information.
 -6 Null Pointer Contact Divelbiss Support for this error.
 -7 Invalid String Contact Divelbiss Support for this error.
 -8 Queue is Full The send / receive queue is full. Evaluate the amount and frequency
 of data being transmitted to the DCCoAP cloud server.
 -9 Not Idle Contact Divelbiss Support for this error.
 -10 Other Error Other unspecified error. Contact Divelbiss Support for this error.
 -11 Not Activated The device is trying to communicate to the DCCoAP cloud server
 but has not been activated on the server.
 -20 Time-out A communications time-out occurred. Check your network and
 settings (Wi-Fi, Ethernet).
EthBool DCCoAP cloud communications control state for the Ethernet interface (BOOL). A True or '1'
 enables and a False or '0' disables the Ethernet interface for DCCoAP cloud communications.
CellBool DCCoAP cloud communications control state for the cellular data modem interface (BOOL). A
 True or '1' enables and a False or '0' disables the celluar data modem interface for DCCoAP
 cloud communications.

Format:
Statvar := EZ_DCCoAP_EnableInterface(EthBool, CellBool);

The EZ_DCCoAP_EnableInterface function is used to enable and disable cellular data modem and Ethernet interfaces
for DCCoAP communications.

Arguments:

The EZ_DCCoAP_EnableInterface controls the Ethernet and cellular data modem interfaces in relation to DCCoAP
cloud communications. The Statvar variable returns the status of the function per the list above. If Statvar return No Er-
ror, the erase was successful. For the variables EthBool and CellBool, a True (1) enables and a False (0) disables the
Ethernet and Cellular data modem interfaces for DCCoAP cloud communications.(repectively).

Description:

FUNCTION_BLOCK DCCoAPCldEnableInterface
 VAR_INPUT
 Enable : bool;
 Eth : BOOL;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 568

 Cel : BOOL;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 enableLast : bool := TRUE;
 END_VAR

 IF (Enable = TRUE) THEN
 EZ_DCCoAP_EnableInterface(Eth, Cel);
 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 569

EZ_DCCoAP_EraseCIK

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 0 None No Error
 -1 LWIP Contact Divelbiss Support for this error.
 -3 No Connection Unable to make a connection to the DCCoAP cloud server. Check
 connections.
 -4 Already Activated Device has already been activated on the DCCoAP cloud server.
 Contact Divelbiss support for more information.
 -5 Activation Failed The activation for this device failed on the DCCoAP cloud server.
 Contact Divelbiss support for more information.
 -6 Null Pointer Contact Divelbiss Support for this error.
 -7 Invalid String Contact Divelbiss Support for this error.
 -8 Queue is Full The send / receive queue is full. Evaluate the amount and frequency
 of data being transmitted to the DCCoAP cloud server.
 -9 Not Idle Contact Divelbiss Support for this error.
 -10 Other Error Other unspecified error. Contact Divelbiss Support for this error.
 -11 Not Activated The device is trying to communicate to the DCCoAP cloud server
 but has not been activated on the server.
 -20 Time-out A communications time-out occurred. Check your network and
 settings (Wi-Fi, Ethernet).

Format:
Statvar := EZ_DCCoAP_EraseCIK();

The EZ_DCCoAP_EraseCIK function is used to erase the stored the CIK on the device (target). The CIK is an identi-
fication string required for communications to DCCoAP cloud servers. The CIK identifies the device to the server and
is unique for each device. This CIK is created and stored when the device is activated DCCoAP cloud server (using
EZ_DCCoAP_Activate). The CIK must be erased using this function before it can be re-activated using
EZ_DCCoAP_Activate function or stored using the EZ_DCCoAP_EraseCIK function.

Arguments:

The EZ_DCCoAP_EraseCIK erases / clears the device's stored CIK. The Statvar variable returns the status of the func-
tion per the list above. If Statvar return No Error, the erase was successful.

Description:

FUNCTION_BLOCK DCCoAPClearCIK
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 END_VAR

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 570

 VAR
 enableLast : bool := TRUE;
 buffer : string[50];
 cr : string[5];
 END_VAR

 IF ((Enable = TRUE) AND (enableLast = FALSE))THEN

 RES := EZ_DCCoAP_EraseCIK();

 IF (RES = 0) THEN
 EZ_FormatString(buffer, 'Successfully erased CIK. $N');
 ELSE
 (*Error Result*)
 EZ_FormatString(buffer, 'Error erasing CIK. Error %d $N', RES);
 END_IF;

 (*Print Result*)
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;
 end_while;

 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 571

EZ_DCCoAP_GetServerTime

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 -1 = Error
 0 = Not Used
 1 = Queued to Send
 2 = Sending
 3 = Completed
Response Response code from DCCoAP Server (DINT). When the function status (Statvar) is
 equal to 3 (complete) or -1 (error), this variable will return an additional response code with
 more detail regarding the communications.
UnixTime Date and Time returned from DCCoAP cloud server in formatted as Unix time (LINT).

Format:
Statvar := EZ_DCCoAP_GetServerTime(Response, UnixTime);

The EZ_DCCoAP_GetServerTime function is used get the current date time from the DCCoAP cloud server (Unix
Time).

Arguments:

For Statvar = -1 (Error)
 Error Error Codes Description
 None 0 No Error
 LWIP -1 Contact Divelbiss Support for this error.
 No Connection -3 Unable to make a connection to the DCCoAP server. Check connections.
 Already Activated -4 Device has already been activated on the DCCoAP cloud server. Contact Divelbiss
 support for more information.
 Activation Failed -5 The activation for this device failed on the DCCoAP cloud server. Contact Divelbiss
 support for more information.
 Null Pointer -6 Contact Divelbiss Support for this error.
 Invalid String -7 Contact Divelbiss Support for this error.
 Queue is Full -8 The send / receive queue is full. Evaluate the amount and frequency of data being
 transmitted to the DCCoAP cloud server.
 Not Idle -9 Contact Divelbiss Support for this error.
 Other Error -10 Other unspecified error. Contact Divelbiss Support for this error.
 Not Activated -11 The device is trying to communicate to the DCCoAP cloud server but has not been
 activated on the server.
 Time-out -20 A communications time-out occurred. Check your network and settings (Wi-Fi,
 Ethernet).
Statvar =3 (No Error) Response Codes
When the function has completed without an error, it will return one of the Response codes. This code returned is built
with 8 total bits.These bits are divided with the 3 upper bits being the response code before the ‘.’ shown below and the
5 lower bits representing the two digits after the ‘.’ shown below. A conversion would be necessary to use this response
code. Typical response codes would be 69 or 129 (shown in red). Contact Divelbiss support for addtional codes.

 Response Converted Code Description
 65 2.01 Created
 68 2.04 Changed

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 572

FUNCTION_BLOCK DCCoAPcldGetTime
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 S : DINT;
 R : DINT;
 STM : DINT;
 END_VAR
 VAR
 month : DINT;
 day : DINT;
 year : DINT;
 wday : DINT;
 hour : DINT;
 minute : DINT;
 sec : DINT;
 complete : bool := FALSE;
 serverTime : LINT;
 buffer : STRING[50];
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 S := EZ_DCCoAP_GetServerTime(R, serverTime);

 IF (S = 3) THEN
 STM := LINT_TO_DINT(serverTime);
 EZ_TimeDateUnixToCalendar(serverTime, month,day,year,wday,hour,minute,sec);
 EZ_FormatString(buffer, 'Server Time: %d/%d/%d %d:%d:%d $N', month, day, year, hour, minute, sec);

 (*Print Result*)
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;

Example:

The EZ_DCCoAP_GetServerTime function attempts communications with the DCCoAP cloud server to to retrieve the
current data and time in Unix time format.

As this function communicates to the DCCoAP cloud server, it must be 'polled' until the Statvar variable returns a status
of the communciations process -1 (for error) or 3 (for completed). With an error or completed Statvar, the Response
variable will return the details of the device to server communciations (see previous list of errors or if completed). Unix-
Time holds the Unix based time and date returned from the server.

Description:

 69 2.05 Content was received.
 95 2.31 Continue
 129 4.01 Unauthorized - The CIK couldn’t be used to authenticate.
 130 4.02 Bad Option
 131 4.03 Forbidden
 132 4.04 Not Found
 136 4.08 Request Entity Incomplete
 140 4.12 Precondition Failed

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 573

 end_while;

 complete := TRUE;

 END_IF;

 IF (S < 0) THEN (*Error*)

 (*Handle error as required by application*)

 complete := TRUE;

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 S := 0;
 R := 0;
 STM := 0;
 complete := FALSE;
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 574

EZ_DCCoAP_GetState

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity (DCCoAP
 cloud state machine). This must be converted to a DINT before it can exported from structured
 text to the ladder diagram.
 Statvar Values

 0 Network Down
 1 Getting Host Address from DNS server
 2 Establishing / Seting up connection
 3 Idle
 4 Sending
 5 Waiting
 6 Error

Format:
Statvar := EZ_DCCoAP_GetState();

The EZ_DCCoAP_GetState function is used to get the current status of the device's internal DCCoAP (DCCoAP cloud)
state machine.

Arguments:

The EZ_DCCoAP_GetState returns the Statvar variable (current status) of the devices internal DCCoAP (DCCoAP
cloud) state machine. The current status is helpful for controlling DCCoAP cloud server communications using struc-
tured text.

Description:

FUNCTION_BLOCK DCCoAPCldGetState
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 S : DINT;
 END_VAR

 IF (Enable = TRUE) THEN
 S := EZ_DCCoAP_GetState();
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 575

EZ_DCCoAP_ReadCIK

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 0 None No Error
 -1 LWIP Contact Divelbiss Support for this error.
 -3 No Connection Unable to make a connection to the DCCoAP cloud server. Check
 connections.
 -4 Already Activated Device has already been activated on the DCCoAP cloud server.
 Contact Divelbiss support for more information.
 -5 Activation Failed The activation for this device failed on the DCCoAP cloud server.
 Contact Divelbiss support for more information.
 -6 Null Pointer Contact Divelbiss Support for this error.
 -7 Invalid String Contact Divelbiss Support for this error.
 -8 Queue is Full The send / receive queue is full. Evaluate the amount and frequency
 of data being transmitted to the DCCoAP cloud server.
 -9 Not Idle Contact Divelbiss Support for this error.
 -10 Other Error Other unspecified error. Contact Divelbiss Support for this error.
 -11 Not Activated The device is trying to communicate to the DCCoAP cloud server
 but has not been activated on the server.
 -20 Time-out A communications time-out occurred. Check your network and
 settings (Wi-Fi, Ethernet).
CIKreturn Variable to hold CIK stored in device (STRING). The CIK is 40 characters long, so this variable
 (or any variables used to handle this data) should be at least 40 bytes in size.

Format:
Statvar := EZ_DCCoAP_ReadCIK(CIKreturn);

The EZ_DCCoAP_ReadCIK function is used read the device's (target's) stored CIK. The CIK is an identification string
that may be required for communications to the DCCoAP cloud server. This CIK is created and stored when the device
is activated to the COAP cloud server (using EZ_DCCoAP_Activate). The CIK identifies the device to the server and is
unique for each device.

Arguments:

The EZ_DCCoAP_ReadCIK reads the CIK stored on the device. The Statvar variable returns the status of the function
per the list above. If Statvar return No Error will result in the actual CIK being returned in the CIKreturn variable.

Description:

FUNCTION_BLOCK DCCoAPCldReadCIK
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES: DINT;
 END_VAR

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 576

 VAR
 enableLast : bool := TRUE;
 cik : string[40];
 buffer : string[70];
 cr : string[5];
 END_VAR

 IF ((Enable = TRUE) AND (enableLast = FALSE))THEN

 RES := EZ_DCCoAP_ReadCIK(cik);

 IF (RES = 0 and cik[0] <> 0) THEN
 EZ_FormatString(buffer, 'Device CIK: '); (*Print title/header to UART*)
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;
 end_while;
 (*Print CIK*)
 while EZ_UartWriteStr(FD_UART2, cik) <= 0 do
 ;
 end_while;
 (*Print Carriage Return and Line Feed*)
 EZ_FormatString(cr, '$N');
 while EZ_UartWriteStr(FD_UART2, cr) <= 0 do
 ;
 end_while;
 ELSE
 (*Error Result*)
 IF (RES = -11) THEN
 (*Device not activated error*)
 EZ_FormatString(buffer, 'Error reading CIK. Device not activated $N');
 ELSE
 (*Other error*)
 EZ_FormatString(buffer, 'Error reading CIK: %d $N', RES);

 END_IF;

 (*Print Result*)
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;
 end_while;
 END_IF;

 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 577

EZ_DCCoAP_SendData

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 -1 = Error
 0 = Not Used
 1 = Queued to Send
 2 = Sending
 3 = Completed
Response Response code from DCCoAP cloud Server (DINT). When the function status (Statvar) is
 equal to 3 (complete) or -1 (error), this variable will return an additional response code with
 more detail regarding the communications.
Var1, Var2... List of variables to send from device to DCCoAP cloud server. Variables can be any standard
 type of variable (DINT, REAL, STRING, etc). The variable names in this function must
 mach the variable names as setup on the DCCoAP cloud server to send / receive.

Format:
Statvar := EZ_DCCoAP_SendData(Response, Var1, Var2...);

The EZ_DCCoAP_SendData function is used send data (not time / date stamped) to the DCCoAP cloud server.

Arguments:

For Statvar = -1 (Error)
 Error Error Codes Description
 None 0 No Error
 LWIP -1 Contact Divelbiss Support for this error.
 No Connection -3 Unable to make a connection to the DCCoAP server. Check connections.
 Already Activated -4 Device has already been activated on the DCCoAP cloud server. Contact Divelbiss
 support for more information.
 Activation Failed -5 The activation for this device failed on the DCCoAP cloud server. Contact Divelbiss
 support for more information.
 Null Pointer -6 Contact Divelbiss Support for this error.
 Invalid String -7 Contact Divelbiss Support for this error.
 Queue is Full -8 The send / receive queue is full. Evaluate the amount and frequency of data being
 transmitted to the DCCoAP cloud server.
 Not Idle -9 Contact Divelbiss Support for this error.
 Other Error -10 Other unspecified error. Contact Divelbiss Support for this error.
 Not Activated -11 The device is trying to communicate to the DCCoAP cloud server but has not been
 activated on the server.
 Time-out -20 A communications time-out occurred. Check your network and settings (Wi-Fi,
 Ethernet).
Statvar =3 (No Error) Response Codes
When the function has completed without an error, it will return one of the Response codes. This code returned is built
with 8 total bits.These bits are divided with the 3 upper bits being the response code before the ‘.’ shown below and the
5 lower bits representing the two digits after the ‘.’ shown below. A conversion would be necessary to use this response
code. Typical response codes would be 68, 69 or 129 (shown in red). Contact Divelbiss support for addtional codes.

 Response Converted Code Description
 65 2.01 Created

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 578

FUNCTION_BLOCK DCCoAPCldWriteData
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 S : DINT;
 R : DINT;
 END_VAR
 VAR
 STTEST : string[40];
 IN1 : INT;
 response : DINT;
 FLTEST : REAL;
 complete : BOOL := FALSE;
 END_VAR
 IN1 := 51;
 STTEST := 'Test Record Upload';
 FLTEST := 102.1;

 IF ((Enable = TRUE) AND (complete = FALSE))THEN

 S := EZ_DCCoAP_SendData(R, IN1, STTEST, FLTEST);

 IF (S < 0) THEN
 (* Error occured when sending *)
 (* Determine what to do. Retry or abort. Up to user. *)
 complete := TRUE;

 ELSIF (S = 3) THEN
 (* Completed Transmission - Check errors*)

 IF ((R = 68) OR (R=69)) THEN
 (* Completed and successful*)

Example:

The EZ_DCCoAP_SendData function attempts communications with the DCCoAP cloud server and sends the vari-
ables listed (Var1, Var2...) to the server.

As this function communicates to the DCCoAP cloud server, it must be 'polled' until the Statvar variable returns a status
of the communciations process -1 (for error) or 3 (for completed). With an error or completed Statvar, the Response
variable will return the details of the device to server communciations (see previous list of errors or if completed).

Description:

 68 2.04 Changed
 69 2.05 Content was received.
 95 2.31 Continue
 129 4.01 Unauthorized - The CIK couldn’t be used to authenticate.
 130 4.02 Bad Option
 131 4.03 Forbidden
 132 4.04 Not Found
 136 4.08 Request Entity Incomplete
 140 4.12 Precondition Failed

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 579

 complete := TRUE;
 END_IF;

 complete := TRUE;
 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 S := 0;
 R := 0;
 complete := FALSE;
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 580

EZ_DCCoAP_SendDataRecord

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 -1 = Error
 0 = Not Used
 1 = Queued to Send
 2 = Sending
 3 = Completed
Response Response code from DCCoAP cloud Server (DINT). When the function status (Statvar) is
 equal to 3 (complete) or -1 (error), this variable will return an additional response code with
 more detail regarding the communications.
UnixTime Variable to hold time / date stamp to send to DCCoAP cloud server in Unix time format (LINT).
Var1, Var2... List of variables to send from device to DCCoAP cloud server. Variables can be any standard
 type of variable (DINT, REAL, STRING, etc). The variable names in this function must
 mach the variable names as setup on the DCCoAP cloud server.

Format:
Statvar := EZ_DCCoAP_SendDataRecord(Response, UnixTime, Var1, Var2...);

The EZ_DCCoAP_SendDataRecord function is used send data with date / time stamp to the DCCoAP cloud server.

Arguments:

For Statvar = -1 (Error)
 Error Error Codes Description
 None 0 No Error
 LWIP -1 Contact Divelbiss Support for this error.
 No Connection -3 Unable to make a connection to the DCCoAP server. Check connections.
 Already Activated -4 Device has already been activated on the DCCoAP cloud server. Contact Divelbiss
 support for more information.
 Activation Failed -5 The activation for this device failed on the DCCoAP cloud server. Contact Divelbiss
 support for more information.
 Null Pointer -6 Contact Divelbiss Support for this error.
 Invalid String -7 Contact Divelbiss Support for this error.
 Queue is Full -8 The send / receive queue is full. Evaluate the amount and frequency of data being
 transmitted to the DCCoAP cloud server.
 Not Idle -9 Contact Divelbiss Support for this error.
 Other Error -10 Other unspecified error. Contact Divelbiss Support for this error.
 Not Activated -11 The device is trying to communicate to the DCCoAP cloud server but has not been
 activated on the server.
 Time-out -20 A communications time-out occurred. Check your network and settings (Wi-Fi,
 Ethernet).
Statvar =3 (No Error) Response Codes
When the function has completed without an error, it will return one of the Response codes. This code returned is built
with 8 total bits.These bits are divided with the 3 upper bits being the response code before the ‘.’ shown below and the
5 lower bits representing the two digits after the ‘.’ shown below. A conversion would be necessary to use this response
code. Typical response codes would be 69 or 129 (shown in red). Contact Divelbiss support for addtional codes.

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 581

FUNCTION_BLOCK DCCoAPCldWriteDataRecord
 VAR_INPUT
 Enable : bool;
 TM : DINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 S : DINT;
 R : DINT;
 END_VAR
 VAR
 STTEST : string[40];
 IN1 : INT;
 response : DINT;
 FLTEST : REAL;
 complete : BOOL := FALSE;
 TimeLint : LINT;
 END_VAR
 IN1 := 51;
 STTEST := 'Test Record Upload';
 FLTEST := 102.1;

 IF ((Enable = TRUE) AND (complete = FALSE))THEN

 TimeLint := DINT_TO_LINT(TM);

 S := EZ_DCCoAP_SendDataRecord(R, TimeLint, IN1, STTEST, FLTEST);

 IF (S < 0) THEN
 (* Error occured when sending *)
 (* Determine what to do. Retry or abort. Up to user. *)
 complete := TRUE;

Example:

The EZ_DCCoAP_SendDataRecord function attempts communications with the DCCoAP cloud server and sends the
variables listed (Var1, Var2...) to the DCCoAP cloud server along with the time / date stamp variable UnixTime (format-
ted to Unix time).

As this function communicates to the DCCoAP cloud server, it must be 'polled' until the Statvar variable returns a status
of the communciations process -1 (for error) or 3 (for completed). With an error or completed Statvar, the Response
variable will return the details of the device to server communciations (see previous list of errors or if completed).

Description:

 Response Converted Code Description
 65 2.01 Created
 68 2.04 Changed
 69 2.05 Content was received.
 95 2.31 Continue
 129 4.01 Unauthorized - The CIK couldn’t be used to authenticate.
 130 4.02 Bad Option
 131 4.03 Forbidden
 132 4.04 Not Found
 136 4.08 Request Entity Incomplete
 140 4.12 Precondition Failed

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 582

 ELSIF (S = 3) THEN
 (* Completed Transmission - Check errors*)

 IF (R = 69) THEN
 (* Completed and successful*)

 complete := TRUE;
 END_IF;

 complete := TRUE;
 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 S := 0;
 R := 0;
 complete := FALSE;
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 583

EZ_DCCoAP_WriteCIK

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 0 None No Error
 -1 LWIP Contact Divelbiss Support for this error.
 -3 No Connection Unable to make a connection to the DCCoAP cloud server. Check
 connections.
 -4 Already Activated Device has already been activated on the DCCoAP cloud server.
 Contact Divelbiss support for more information.
 -5 Activation Failed The activation for this device failed on the DCCoAP cloud server.
 Contact Divelbiss support for more information.
 -6 Null Pointer Contact Divelbiss Support for this error.
 -7 Invalid String Contact Divelbiss Support for this error.
 -8 Queue is Full The send / receive queue is full. Evaluate the amount and frequency
 of data being transmitted to the DCCoAP cloud server.
 -9 Not Idle Contact Divelbiss Support for this error.
 -10 Other Error Other unspecified error. Contact Divelbiss Support for this error.
 -11 Not Activated The device is trying to communicate to the DCCoAP cloud server
 but has not been activated on the server.
 -20 Time-out A communications time-out occurred. Check your network and
 settings (Wi-Fi, Ethernet).
CIK Variable to hold CIK to be stored in the device (STRING). The CIK is 40 characters long, so
 this variable (or any variables used to handle this data) should be at least 40 bytes in size.

Format:
Statvar := EZ_DCCoAP_WriteCIK(CIK);

The EZ_DCCoAP_WriteCIK function is used manually write and store the CIK to the device (target). The CIK is an
identification string that may be required for communications to the DCCoAP cloud server. The CIK identifies the device
to the server and is unique for each device. This CIK is created and stored when the device is activated to the DCCoAP
cloud server (using EZ_DCCoAP_Activate). This allows for a supplement method for writing a CIK to the device (CIK
must have been created previously). The CIK must be erased (using EZ_DCCoAP_EraseCIK) or have not been written
previously before this function may be used to write the CIK.

Arguments:

The EZ_DCCoAP_WriteCIK writes / stores the CIK variable value to the device. The Statvar variable returns the status
of the function per the list above. If Statvar return No Error, the write was successful.

Description:

FUNCTION_BLOCK DCCoAPCldWriteCIK
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 584

 RES : DINT;
 END_VAR
 VAR
 enableLast : bool := TRUE;
 cik : string[40];
 buffer : string[50];
 cr : string[5];
 END_VAR
 cik := '0123456789012345678901234567890123456789';

 IF ((Enable = TRUE) AND (enableLast = FALSE))THEN

 RES := EZ_DCCoAP_WriteCIK(cik);

 IF (RES = 0) THEN
 EZ_FormatString(buffer, 'Successfully wrote CIK: ');
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;
 end_while;
 (*Print CIK*)
 while EZ_UartWriteStr(FD_UART2, cik) <= 0 do
 ;
 end_while;
 (*Print Carriage Return and Line Feed*)
 EZ_FormatString(cr, '$N');
 while EZ_UartWriteStr(FD_UART2, cr) <= 0 do
 ;
 end_while;
 ELSE
 (*Error Result*)
 EZ_FormatString(buffer, 'Error writing CIK: %d $N', RES);

 (*Print Result*)
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do
 ;
 end_while;
 END_IF;

 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 585

FUNCTION_BLOCK ExampleReadEEPROM
 VAR_INPUT
 Enable : bool;
 AdrStart: DINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 NByte : DINT;
 ReturnData : DINT;
 END_VAR

 IF Enable = 1 THEN
 NByte := EZ_EEPromRead(FD_PLCHIP_PXX_EEPROM,AdrStart,ReturnData);
 ELSE
 NByte := 0;
 ReturnData := 0;
 End_If;
 Q := Enable;
END_FUNCTION_BLOCK

Example:

The EZ_EEPromRead function accesses the EEPROM memory identified in FileDescriptor, locates the beginning ad-
dress identified by StartAddr and reads the number of bytes for the variable type of ReturnData. The number of bytes
read is returned in UDINTvar and the actual read EEPROM data is stored in the ReturnData variable.

Description:

FileDescriptor FD_PLCHIP_PXX_EEPROM for internal PLC on a Chip EEPROM.
 FD_FM24XXX for external FRAM.
StartAddr EEPROM memory start address to read from (DINT)
ReturnData Holding variable for data read from EEPROM. Supports ALL variable types.
DINTvar Function return holding variable (DINT). # of bytes read based on the variable type used in
 ReturnData.

Format:
DINTvar := EZ_EEPromRead(FileDescriptor, StartAddr, ReturnData);

The EZ_EEPromRead function is used to read data from the on-board PLC on a Chip or external chip FRAM EEPROM
memory.

EZ_EEPromRead

Summary:

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 586

FUNCTION_BLOCK ExampleReadEEPROMArray
 VAR_INPUT
 Enable : bool;
 AdrStart: DINT;
 END_VAR
 VAR_TEMP
 Vals : ARRAY[0..11] of USINT;
 B : DINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 NByte : DINT;
 OVal1 : DINT;
 OVal2 : DINT;
 OVal3 : DINT;
 END_VAR

 IF Enable = 1 THEN
 NByte := EZ_EEPromReadArray(FD_PLCHIP_PXX_EEPROM,AdrStart,Vals,0,12); (*Call function*)

 Oval1 := TO_LSB_DINT(Vals,0); (*Update output vars with actual read eeprom data from array*)
 Oval2 := TO_LSB_DINT(Vals,4);
 Oval3 := TO_LSB_DINT(Vals,8);
 ELSE
 NByte := 0;

Example:

The EZ_EEPromReadArray function accesses the EEPROM memory identified in FileDescriptor, locates the beginning
address identified by StartAddr and reads the number of bytes idenfified by Len and stores the data as a byte array into
the array identified in Buffer beginning at the offset location. The number of bytes read is returned in UDINTvar.

Description:

FileDescriptor FD_PLCHIP_PXX_EEPROM for internal PLC on a Chip EEPROM.
 FD_FM24XXX for external FRAM.
StartAddr EEPROM memory start address to read from (DINT)
Buffer Destination buffer to hold the read EEPROM contents (ARRAY[] of USINT).
Offset Offset location in the Buffer where to start writing read EEPROM data to (DINT).
Len Length / Number of bytes to read from the EEPROM (DINT)
DINTvar Function return holding variable (DINT). # of bytes read.

Format:
DINTvar := EZ_EEPromReadArray(FileDescriptor, StartAddr, Buffer, Offset, Len);

The EZ_EEPromReadArray function is used to read a data array from the on-board PLC on a Chip or external chip
FRAM EEPROM memory.

EZ_EEPromReadArray

Summary:

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 587

 Oval1 := 0; (*Update output vars with 0*)
 Oval2 := 0;
 Oval3 := 0;
 End_If;
 Q := Enable;
END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 588

FUNCTION_BLOCK ExampleEEPROMWrite
 VAR_INPUT
 Enable : bool;
 AdrStart: DINT;
 Datavar : DINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 NByte : DINT;
 END_VAR

 IF Enable = 1 THEN
 (*Is function enabled?*)
 NByte := EZ_EEPromWrite(FD_PLCHIP_PXX_EEPROM,AdrStart,Datavar); (*Call function*)
 ELSE
 NByte := 0;
 (*Set to 0 if function disabled*)
 End_If;
 Q := Enable;
END_FUNCTION_BLOCK

Example:

The EZ_EEPromWrite function accesses the EEPROM memory identified in FileDescriptor, locates the beginning
address identified by StartAddr and writes the number of bytes for the variable type of Datavar. The number of bytes
written is returned in UDINTvar.

Description:

FileDescriptor FD_PLCHIP_PXX_EEPROM for internal PLC on a Chip EEPROM.
 FD_FM24XXX for external FRAM.
StartAddr EEPROM memory start address to write to. (DINT)
Datavar Variable holding data to be written to EEPROM. Supports ALL variable types.
DINTvar Function return holding variable (DINT). # of bytes written based on the variable type used in
 ReturnData.

Format:
DINTvar := EZ_EEPromWrite(FileDescriptor, StartAddr, Datavar);

The EZ_EEPromWrite function is used to write data to the on-board PLC on a Chip or external chip FRAM EEPROM
memory.

EZ_EEPromWrite

Summary:

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 589

FUNCTION_BLOCK ExampleWriteEEPROMArray
 VAR_INPUT
 Enable : bool;
 AdrStart: DINT;
 EVal1 : DINT;
 EVal2 : DINT;
 EVal3 : DINT;
 END_VAR
 VAR_TEMP
 Vals : ARRAY[0..11] of USINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 NByte : DINT;
 END_VAR

 IF Enable = 1 THEN
 LSB_DINT_TO_ARRAY(Vals,0,Eval1); (*Load Array with input values to store*)
 LSB_DINT_TO_ARRAY(Vals,4,Eval2);
 LSB_DINT_TO_ARRAY(Vals,8,Eval3);

 NByte := EZ_EEPromWriteArray(FD_PLCHIP_PXX_EEPROM,AdrStart,Vals,0,12); (*Call function*)

 ELSE

Example:

The EZ_EEPromWriteArray reads data from the Buffer (array of USINT), beginning with the Offset location and reading
the number of bytes identified by Len. It then accesses the EEPROM memory identified by FileDescriptor and writes
the number of bytes of the array beginning at the StartAddr location of the EEPROM memory. The UDINTvar returns
the number of bytes written.

Description:

FileDescriptor FD_PLCHIP_PXX_EEPROM for internal PLC on a Chip EEPROM.
 FD_FM24XXX for external FRAM.
StartAddr EEPROM memory start address to write array to (DINT)
Buffer Source buffer for the data array to write to EEPROM (ARRAY[] of USINT).
Offset Offset location in the Buffer where to start reading write EEPROM data from (DINT).
Len Length / Number of bytes to write to the EEPROM (DINT)
DINTvar Function return holding variable (DINT). # of bytes written.

Format:
DINTvar := EZ_EEPromWriteArray(FileDescriptor, StartAddr, Buffer, Offset, Len);

The EZ_EEPromWriteArray function is used to write a data array to the on-board PLC on a Chip or external chip FRAM
EEPROM memory.

EZ_EEPromWriteArray

Summary:

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 590

 NByte := 0; (*Update output vars with 0*)
 End_If;
 Q := Enable;
END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 591

EZ_Eth_DHCPRelease

Summary:

FUNCTION_BLOCK ReleaseDHCP
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 LastEnable : bool;
 End_VAR

 IF (Enable = TRUE)AND (LastEnable = False) THEN (*Rising Edge detector*)

 Q := EZ_Eth_DHCPRelease();

 ELSE
 Q := False;

 END_IF;

 LastEnable := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_Eth_DHCPRelease releases the Ethernet communication port's DHCP IP address resulting in the Ethernet
port having no IP address on the network. Upon successful release, the BOOLvar variable returns a True (1).

Description:

BOOLvar Function return holding variable (BOOL). Returns True (1) upon success.

Format:
BOOLvar := EZ_Eth_DHCPRelease();

The EZ_Eth_DHCPRelease function is used to release the Ethernet communication port's DHCP IP address. This will
result in the Ethernet port having no IP address on the network.

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 592

EZ_Eth_DHCPRenew

Summary:

FUNCTION_BLOCK RenewDHCP
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 LastEnable : bool;
 End_VAR

 IF (Enable = TRUE)AND (LastEnable = False) THEN (*Rising Edge detector*)

 Q := EZ_Eth_DHCPRenew();

 ELSE
 Q := False;

 END_IF;

 LastEnable := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_Eth_DHCPRenew renews (refreshes or gets a new) the Ethernet communication port's DHCP IP address on a
DHCP supported network. Upon successful release, the BOOLvar variable returns a True (1).

Description:

BOOLvar Function return holding variable (BOOL). Returns True (1) upon success.

Format:
BOOLvar := EZ_Eth_DHCPRenew();

The EZ_Eth_DHCPRenew function is used to renew (refresh or get a new) the Ethernet communication port's IP ad-
dress (DHCP) on an ethernet nework that supports DHCP IP.

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 593

EZ_Eth_GetHostname

Summary:
The EZ_Eth_GetHostname function is used to read and return the Ethernet communication port's Hostname.

FUNCTION_BLOCK RdEthName
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 Rtn : bool;
 hname: string[30];
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 If (Enable = true) AND (LastEn = False) then
 Rtn := EZ_Eth_GetHostname(hname);
 LastEn := true;
 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_Eth_GetHostname reads the target's (device's) Ethernet communication hostname and stores it in the string-
buf variable. BOOLvar is True (1) when upon success.

Description:

BOOLvar Function return holding variable (BOOL). Returns the status of the function. Returns True (1)
 upon success
stringbuf Variable (STRING). This variable holds the returned Hostname.

Format:
BOOLvar := EZ_Eth_GetHostname(stringbuf);

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 594

EZ_Eth_GetIPV4Addr

Summary:
The EZ_Eth_GetIPV4Addr function is used to retrieve the device's (target's) current Ethernet communications port
network IP address information.

FUNCTION_BLOCK GetIPInfo
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 IP1: DINT;
 IP2: DINT;
 IP3: DINT;
 IP4: DINT;
 StIP: Bool;
 END_VAR
 VAR
 enableLast : bool;
 OURIP : ARRAY[0..3] OF USINT;
 NETMASK : ARRAY[0..3] OF USINT;
 GWAY : ARRAY[0..3] OF USINT;
 DNS1 : ARRAY[0..3] OF USINT;
 DNS2 : ARRAY[0..3] OF USINT;
 SIP : bool;
 END_VAR

 IF ((Enable = TRUE) AND (enableLast = FALSE))THEN (*Detect rising edge*)

Example:

The EZ_Eth_GetIPV4Addr function returns the IP address information of the Ethernet port on an ethernet network. The
BOOLvar return variable returns a True (1) when complete.The variable StatIP (BOOL) hold the type of IP address (0
for dynamic, 1 for static), OurIP (array of USINT) holds the IP address, the variable Subnet (array of USINT) holds the
subnet, the variable Gateway holds the gateway (array of USINT), the variable DNS1 (array of USINT) holds the DNS1
address, the variable DNS2 (array of USINT) holds the DNS2 address.

Description:

BOOLvar Function return holding variable (BOOL). Returns the status of the function's activity (optional).
 Returns True (1) upon success.
StatIP Type of IP used: Static or Dynamic (BOOL). True when using Static IP, False for Dynamic.
OurIP Ethernet Port IP address (4 Bytes or more total) (ARRAY[] of USINT).
Subnet Ethernet Port subnet address (4 Bytes or more total) (ARRAY[] of USINT).
Gateway Ethernet Port gateway address (4 Bytes or more total) (ARRAY[] of USINT).
DNS1 Ethernet Port DNS1 address (4 Bytes or more total) (ARRAY[] of USINT).
DNS2 Ethernet Port DNS2 address (4 Bytes or more total) (ARRAY[] of USINT).

Format:
BOOLvar := EZ_Eth_GetIPV4Addr(StatIP,OurIP,Subnet,Gateway,DNS1,DNS2); or
 EZ_Eth_GetIPV4Addr(StatIP,OurIP,Subnet,Gateway,DNS1,DNS2);

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 595

 EZ_Eth_GetIpV4Addr(SIP,OURIP,NETMASK,GWAY,DNS1,DNS2); (*Get IP Info*)

 IP1 := USINT_TO_DINT(OURIP[0]); (*Output IP only to ladder diagram*)
 IP2 := USINT_TO_DINT(OURIP[1]);
 IP3 := USINT_TO_DINT(OURIP[2]);
 IP4 := USINT_TO_DINT(OURIP[3]);

 StIP := SIP; (*Output type of IP to ladder diagram*)

 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 596

EZ_Eth_GetLinkActive

Summary:
The EZ_Eth_GetLinkActive function is used to check if the device's (target's) current Ethernet physical Link is active
(port is connected to a switch or hub).

FUNCTION_BLOCK EthLinkActive
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 LK : bool;
 END_VAR
 VAR
 enableLast : bool;
 LINK : bool;
 END_VAR

 IF ((Enable = TRUE) AND (enableLast = FALSE))THEN (*Detect rising edge*)

 LINK := EZ_Eth_GetLinkActive();

 IF (LINK > 0) THEN
 LK := LINK; (*Set output to LINK (1) if true*)
 ELSE
 LK := 0;
 END_IF;

 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_Eth_GetLinkActive function is used to check if the Ethernet physical LINK is active. The BOOLvar variable
returns the status of the link (False (0) for not active or True (1) for active.

Description:

BOOLvar Function return holding variable (BOOL). Returns the status of the Ethernet physical Link.
 False (0) for not active or True (1) for active.

Format:
BOOLvar := EZ_Eth_GetLinkActive();

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 597

EZ_Eth_SetEnableAutoIpV4

Summary:
The EZ_Eth_SetEnableAutoIpV4 function is used to enable the device (target) Ethernet communication port's Auto IP
setting and configure if this change is to be persistent when power is cycled or the device is re-booted.

UNCTION_BLOCK EthAuto
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 Rtn : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 If (Enable = true) AND (LastEn = False) then
 Rtn := EZ_Eth_SetEnableAutoIpV4(1);
 LastEn := true;
 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_Eth_SetEnableAutoIpV4 sets the target's (device's) Ethernet communication port to for Auto IPV4. The Persist
variable configures if the Auto IPV4 setting is to be kept after a re-boot of the target. When True (1), this sets a flag for
the bootloader to make this change for all subsequent re-boots and when Fasle (0), this change will be discarded after
re-boot. BOOLvar is True (1) when upon success. Auto IPV4 determines if an auto IP address will be assigned if no IP
address is received using DHCP (timed-out).

 When this function it used to enable and set as persistent (permanent), the DHCP Enabled setting in the
 bootloader is disabled (no DHCP). If the persistent is not set (not permanent), then DHCP remains enabled
 and on any reboot or power cycle, the AutoIPV4 will not retain the enabled setting.

Description:

BOOLvar Function return holding variable (BOOL). Returns the status of the function. Returns True (1)
 upon success
Persist Variable to set if the device (target) should keep the Auto IPV4 enabled setting after re-boot
 (BOOL) or use the settings in the target's bootloader. When True (1), this sets a flag for the
 bootloader to make this change for all subsequent re-boots.

Format:
BOOLvar := EZ_Eth_SetEnableAutoIpV4(Persist);

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 598

EZ_Eth_SetEnableDHCPIPV4

Summary:
The EZ_Eth_SetEnableDHCPIPV4 function is used to configure the device (target) Ethernet communication port's IP
address type to DHCP and configure if the this change is to be persistent when power is cycled or the device is re-
booted.

FUNCTION_BLOCK Set2DHCP
 VAR_INPUT
 Enable : bool;
 Perm : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 enableLast : bool;
 STS : bool;
 END_VAR

 IF ((Enable = TRUE) AND (enableLast = FALSE))THEN (*Detect rising edge*)

 STS := EZ_Eth_SetEnableDHCPIpV4(Perm); (*Set to DHCP and if keep setting on reboot based on Perm*)

 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_Eth_SetEnableDHCPIPV4 sets the target's (device's) Ethernet communication port to use DHCP for the IP
configuration (gets IP from DHCP server). The Persist variable configures if the DHCP setting is to be kept after a re-
boot of the target. When True (1), this sets a flag for the bootloader to make this change for all subsequent re-boots
and when Fasle (0), this change will be discarded after re-boot. BOOLvar is True (1) when upon success.

 When this function is used to enable and set as persistent (permanent), the Auto IPV4 Config is also enabled.
 If the persistent is not set (not permanent), then the Auto IPV4 Config remains disabled and on any re
 boot or power cycle, the DHCP will not retain the enabled setting.

Description:

BOOLvar Function return holding variable (BOOL). Returns the status of the function. Returns True (1)
 upon success
Persist Variable to set if the device (target) should keep DHCP as the IP address type after re-boot
 (BOOL) or use the settings in the target's bootloader. When True (1), this sets a flag for
 the bootloader to make this change for all subsequent re-boots.

Format:
BOOLvar := EZ_Eth_SetEnableDHCPIPV4(Persist);

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 599

EZ_Eth_SetHostname

Summary:
The EZ_Eth_SetHostname function is used to set the Ethernet communication port's Hostname. When this function is
used to set the Hostname, the hostname will be kept until changed with this function or in the Bootloader screen.

FUNCTION_BLOCK EthName
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 Rtn : bool;
 hname: string := 'Pump_1';
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 If (Enable = true) AND (LastEn = False) then
 Rtn := EZ_Eth_SetHostname(hname);
 LastEn := true;
 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_Eth_SetHostname sets the target's (device's) Ethernet communication hostname to the values specified in the
stringbuf variable. The Hostname is stored until changed by this function or manually in the target's Bootloader screen.
BOOLvar is True (1) when upon success.

Description:

BOOLvar Function return holding variable (BOOL). Returns the status of the function. Returns True (1)
 upon success
stringbuf Variable (STRING) holding the name to use for the Ethernet Hostname.

Format:
BOOLvar := EZ_Eth_SetHostname(stringbuf);

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 600

EZ_Eth_SetStaticIPV4Addr

Summary:
The EZ_SetStaticIPV4Addr function is used to configure the target's (device's) Ethernet communication port to Static IP
type (IP address set locally, not DHCP), sets the IP address information to the target (device) and configures if the this
change is to be persistent when power is cycled or the device is re-booted.

FUNCTION_BLOCK Set2Static
 VAR_INPUT
 Enable : bool;
 Perm : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 enableLast : bool;
 STS : bool;
 OURIP : ARRAY[0..3] OF USINT := [192, 168,1,1]; (*Configure IP address info as*)
 SUBNET : ARRAY[0..3] OF USINT := [0,0,0,0]; (*part of variable definition*)
 GWAY : ARRAY[0..3] OF USINT := [0,0,0,0];
 DNS1 : ARRAY[0..3] OF USINT := [123,45,67,9];
 DNS2 : ARRAY[0..3] OF USINT := [101,121,32,5];
 END_VAR

Example:

The EZ_SetStaticIPV4Addr function configures the type of IP address to static, configures the IP address information
and configures if static is to be kept after re-boot of the target's (device's) Ethernet port. The BOOLvar return variable
returns a True (1) when complete.The variable OurIP (array of USINT) holds the IP address, the variable Subnet (array
of USINT) holds the subnet, the variable Gateway holds the gateway (array of USINT), the variable DNS1 (array of
USINT) holds the DNS1 address, the variable DNS2 (array of USINT) holds the DNS2 address and the variable persist
holds the setting if static IP is to be used after re-boot (when True (1), this sets a flag for the bootloader to make this
change for all subsequent re-boots).

Description:

BOOLvar Function return holding variable (BOOL). Returns the status of the function's activity (optional).
 Returns True (1) upon success.
OurIP Ethernet Port IP address (4 Bytes or more total) (ARRAY[] of USINT).
Subnet Ethernet Port subnet address (4 Bytes or more total) (ARRAY[] of USINT).
Gateway Ethernet Port gateway address (4 Bytes or more total) (ARRAY[] of USINT).
DNS1 Ethernet Port DNS1 address (4 Bytes or more total) (ARRAY[] of USINT).
DNS2 Ethernet Port DNS2 address (4 Bytes or more total) (ARRAY[] of USINT).
Persist Variable to set if the device (target) should keep Static as the IP address type after re-boot
 (BOOL) or use the settings in the target's bootloader. When True (1), this sets a flag for
 the bootloader to make this change for all subsequent re-boots.

Format:
BOOLvar := EZ_SetStaticIPV4Addr(OurIP,Subnet,Gateway,DNS1,DNS2,Persist); or
 EZ_SetStaticIPV4Addr(OurIP,Subnet,Gateway,DNS1,DNS2,Persist);

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 601

 IF ((Enable = TRUE) AND (enableLast = FALSE))THEN (*Detect rising edge*)

 (*Set to Static and if keep setting on reboot*)
 STS := EZ_Eth_SetStaticIpV4Addr(OURIP,SUBNET,GWAY,DNS1,DNS2,Perm);

 END_IF;

 enableLast := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 602

StrBuffer Destination string variable where the formatted resulting string is stored.
DINTvar Function return holding variable (DINT). # of bytes written to the StrBuffer variable.
FormatStringx String that formats the data of the variable to be added to the StrBuffer. All the FormatString
 entries are surrouned by single quotes (').
Varx The variables to format and add to the StrBuffer. The number of variables must match the
 number of FormatString entries and must be in the same order for proper functionality. Each
 Variable is separated by a comma (,).
VarFormatFlag Variable format and Flags are used to identify variable types and formats as well as special
 control characters needed for specific formatting. Follows 'C' PrintF standard.
 %flag width .precision Example Text: OIL PSI %-3d
 % - identifies the beginning of a variable or other type of text entry
 flag - This flag is optional. Use the following flags to change the way data is
 transmitted.
 Flag Description
 - Left align the variable within the specified width. Default is align right.

 0 If width is prefixed with 0, leading zeros are added until the minimum width is
 reached.
 If 0 and - are used together, the 0 is ignored. If 0 is specified in an integer
 format, the0 is ignored.
 width This flag is optional. Width is the number of characters that will be printed
 (total).
 .precision This flag is optional. The precision is the number of digits after the decimal
 point when using REAL variables.
 Some common variable formats and flags are:
 %d - Signed Integer %X - Upper Case Hexadecimal
 %u - Unsigned Integer %f - Real or Float Variable
 %x - Lower Case Hexadecimal %b - binary
 %o - Octal %s - String
 To Print a '%' use %%
 To Print a Boolean as 0 or 1 use %d
 To Print a Boolean as OFF or ON use %O
 To Print a Boolean as FALSE or TRUE, use %T
 Toi add a carriage return, use $N.

Format:
DINTvar := EZ_FormatString(StrBuffer, 'FormatString1 VarformatFlag,FormatString2 VarformatFlag..', Var1,Var2);

The EZ_FormatString function is used to format a string to specific requirements similar to the standard 'C' PrintF. This
is useful for formatting a string to send serial data or displaying data.

EZ_FormatString

Summary:

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 603

Example:

The EZ_FormatString takes one to multiple variables as an input and uses the FormatString and Flags to format the
data that is stored in the StrBuffer. The StrBuffer must be large enough to hold the final formatted string data.

Description:

FUNCTION_BLOCK DisplayFormatData
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 Line1 : string[16];
 Line2 : string[16];
 Value1: Real;
 Value2: DINT;
 Value3: DINT;
 Value4: Real;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 Value1 := 12.567; (*Set value for each variable*)
 Value2 := 24;
 Value3 := 967;
 Value4 := 8.1415;

 IF Enable = 1 THEN;

 (*Format Line1 as Value1 as V1: Real with 2 digits each side of decimal pt & Value 2 as V2: Integer*)
 EZ_FormatString(Line1,'V1:%2.2f V2:%d',Value1,Value2);

 (*Format Line2 as Value3 as V3: Integer & Value 4 as V4: Real with 1 digit each side of decimal pt*)
 EZ_FormatString(Line2,'V3:%d V4:%1.1f',Value3,Value4);

 EZ_LcdWrite(0,0,Line1); (*Write Line1 to LCD display*)
 EZ_LcdWrite(1,0,Line2); (*Write Line2 to LCD display*)

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 604

EZ_FS_Close

Summary:

The EZ_FS_Close function closes the open file identified by FileHandle. Any data that is cached is automatically
flushed from the cache and written to the file before it is closed. DINTvar returns the status of the file system action
(CLOSE in this case).

It is recommended for data reliability that open file(s) be closed upon completion of the action that caused
them to be opened (read, write, append, etc). In the event of a power loss, un-written data (cached, file not
closed) will be lost.

Description:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.
 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Format:
DINTvar := EZ_FS_Close(FileHandle);

The EZ_FS_Close function is used to close an open file on the file system (SD Card). Any cached data is flushed and
written to the file before it is closed.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 605

FUNCTION_BLOCK FileSystem
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 DATA : STRING[40];
 BWR : UDINT;
 fresult : DINT;
 END_VAR

 DATA := 'Test value write'; (*set data to store as test*)

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log and append to it*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#112, FileHandle);

 IF (fresult = 0) THEN (*File opened or created successfully*)
 (*Write test string to file*)
 fresult := EZ_FS_WriteStr(FileHandle,DATA,BWR);
 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 606

EZ_FS_Flush

Summary:

The EZ_FS_Flush function flushes and stores any cached data in the open file identified by FileHandle. DINTvar re-
turns the status of the file system action (FLUSH in this case). This function is typically not required if recommendations
are followed (close all open files after action) as this flushing is performed automatically during a EZ_FS_Close opera-
tion. When files are opened, then accessed as needed (read/write) and then closed, this function is not required.

Description:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.
 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Format:
DINTvar := EZ_FS_Flush(FileHandle);

The EZ_FS_Flush function is used to flush any data that is cached and write it to the SD Card. This requires a an
SD Card file to be opened and data existing (from a previous write data function) in the cache. Typically, little data is
cached and the EZ_FS_CLOSE function automatically performs this flushing effect before closing a file on the SD
Card.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 607

FUNCTION_BLOCK FileSystemFlush
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 DATA : STRING[100];
 BWR : UDINT;
 fresult : DINT;
 END_VAR

 DATA := '012345678abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'; (*set data to store
as test*)

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log and append to it*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#112, FileHandle);

 IF (fresult = 0) THEN (*File opened or created successfully*)
 (*Write test string to file*)
 fresult := EZ_FS_WriteStr(FileHandle,DATA,BWR);
 END_IF;

 (*Flush the cache to file*) (* This example is for referenc of the EZ_FS_Flush*)
 (* Function only. The method of use is not recommended*)
 fresult := EZ_FS_Flush(FileHandle); (* The EZ_FS_Close function should be used to close the*)
 (* Open file after a write as the RECOMMENDED METHOD*)

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 608

EZ_FS_Open

Summary:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
FilePath The path used to find the file to be opened (STRING). The SD Card path begins with 'M:\\' The
 path must contain the entire path including the file name and extension.
ModeFlag Determines additional modes of operation associated with the EZ_FS_Open function (DINT)
 (this call only). Mode flags may be combined to simplify the EZ_FS_Open by combining the
 hex values shown.
 The Mode Flags are:
 Value (hex) Description
 16#00 File Action - Open Existing File (Fails if file does not exist)
 16#01 File Action - Read. Used to read data only. (Combine with Write for read/write
 access).
 16#02 File Action - Write. Used to write data only. (Combine with Read for read/write
 access).
 16#04 File Action - Create New. Used to read data only. (Fails if file already exists).
 16#08 File Action - Create Always. Creates a new file. If the file already exists it will
 be truncated and over-written.
 16#10 File Action - Open Always. Opens the file is it already exists. The file is
 created if it does not exist. (Combine with Append for locating the end of the
 file to begin writing to). If Append is not used then the EZ_FS_Seek function
 will be required to locate the end of the file data to begin writing.
 16#100 File Action - Append. (Combined with Write for finding the end of the file and
 appending or Combine with Open Always to locate the end of the file to
 append upon file open).

 Combination Examples:
 Open existing file for read:
 fresult := EZ_FS_Open('m:\\test1.log', 16#1, fileHandle);
 Open existing file for write:
 fresult := EZ_FS_Open('m:\\test1.log', 16#2, fileHandle);
 Open existing file for read/write, create if not exist:
 fresult := EZ_FS_Open('m:\\test1.log', 16#13, fileHandle);
 Open existing file write, append, create if not exist:
 fresult := EZ_FS_Open('m:\\test1.log', 16#112, fileHandle);

DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.

Format:
DINTvar := EZ_FS_Open(FilePath, ModeFlag, FileHandle);

The EZ_FS_Open function is used to open file system (SD Card) files. This function includes additional command flags
to configure additional features as part of the file open action (such as create, append, etc).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 609

The EZ_FS_Open function is used to open (optionally create or append) a file on the file system (SD Card). The file
identifcation is automatically assigned and returned as FileHandle (DINT). This value must be kept and used for all
subsequent file actions until the file is closed (using the EZ_FS_Close function). The FilePath (STRING) can be used
direclty in the function call or as a string variable. This must be the full path, filename (including extension) for the file to
be opened. The ModeFlag (DINT) can be used directly in the function call or as a DINT variable. This ModeFlag identi-
fies the additional characteristics of the file open action (see list previous page). DINTvar returns the function status
(success or error (see list above).

It is recommended for data reliability that open file(s) be closed upon completion of the action that caused
them to be opened (read, write, append, etc). In the event of a power loss, un-written data (cached, file not
closed) will be lost.

Description:

 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Continued Next Page------»

FUNCTION_BLOCK FileSystem
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 DATA : STRING[40];
 BWR : UDINT;
 fresult : DINT;

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 610

 END_VAR

 DATA := 'Test value write'; (*set data to store as test*)

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log and append to it*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#112, FileHandle);

 IF (fresult = 0) THEN (*File opened or created successfully*)
 (*Write test string to file*)
 fresult := EZ_FS_WriteStr(FileHandle,DATA,BWR);
 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 611

EZ_FS_Read

Summary:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
DataBuffer Data buffer to store data read from the file (Array of USINT).
Offset Offset (location) into DataBuffer to begin writing data to that is read from the file (UDINT).
LenBytes Number of bytes to read from from the file (UDINT).
NBytes Number of Bytes actually read from the file (UDINT). Returned from the function.
DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.
 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Format:
DINTvar := EZ_FS_Read(FileHandle, DataBuffer, Offset, LenBytes, NBytes);

The EZ_FS_Read function is used read data from the file system (SD Card). To use the EZ_FS_Read function, a file
must be open (see EZ_FS_Open) and the location in the file to read from (see the EZ_FS_Seek function).

Arguments:

Continued Next Page------»

The EZ_FS_Read function is used to read data from the a file of the file system (SD Card). Before this function may be
used to read data, a file must be open and the file's pointer set at the location to start reading data from (See EZ_FS_
Open and EZ_FS_Seek functions).

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 612

The data is read from the file identified by FileHandle beginning the file's internal pointer location. The number of bytes
set by LenBytes is attempted to be read from the file and stored in the DataBuffer beginning at the Offset location. The
NBytes returns the actual number of bytes read from the file. The DINTvar returns the status of the function's actions
(successful or error, see list on the previous page).

It is recommended for data reliability that open file(s) be closed upon completion of the action that caused
them to be opened (read, write, append, etc). In the event of a power loss, un-written data (cached, file not
closed) will be lost.

FUNCTION_BLOCK FSReadbytes
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 BT : DINT;
 DT1 : DINT;
 DT2 : DINT;
 DT3 : DINT;
 DT4 : DINT;
 DT5 : DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 DATA : ARRAY[0..4] of USINT;
 Loc : UDINT := 11;
 fresult : DINT;
 BWR : UDINT;
 END_VAR

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log and append to it*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#13, FileHandle);

 IF (fresult = 0) THEN (*File opened successfully*)
 (*Seek location in file to read from*)
 fresult := EZ_FS_Seek(FileHandle,Loc);
 END_IF;

 IF (fresult = 0) THEN (*Location pointer set*)
 (*read data from file*)
 fresult := EZ_FS_Read(FileHandle,DATA,0,5,BWR);
 BT := UDINT_TO_DINT(BWR);
 DT1 := USINT_TO_DINT(DATA[0]);
 DT2 := USINT_TO_DINT(DATA[1]);
 DT3 := USINT_TO_DINT(DATA[2]);
 DT4 := USINT_TO_DINT(DATA[3]);
 DT5 := USINT_TO_DINT(DATA[4]);

 ELSE
 DT1 := 0;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 613

 DT2 := 0;
 DT3 := 0;
 DT4 := 0;
 DT5 := 0;
 BT := 0;

 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 R := fresult;

 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 614

EZ_FS_ReadStr

Summary:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
DataBuffer Data buffer to store string data read from the file (STRING). Size of string must be sufficient to
 hold the number of bytes being read from the file.
LenBytes Number of bytes to read from from the file (UDINT).
NBytes Number of Bytes actually read from the file (UDINT). Returned from the function.
DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.
 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Format:
DINTvar := EZ_FS_ReadStr(FileHandle, DataBuffer, LenBytes, NBytes);

The EZ_FS_ReadStr function is used to read string data from the file system (SD Card). To use the EZ_FS_ReadStr
function, a file must be open (see EZ_FS_Open) and the location in the file to read from (see the EZ_FS_Seek func-
tion).

Arguments:

Continued Next Page------»

The EZ_FS_ReadStr function is used to read string data from the a file of the file system (SD Card). Before this func-
tion may be used to read data, a file must be open and the file's pointer set at the location to start reading data from
(See EZ_FS_Open and EZ_FS_Seek functions).

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 615

The data is read from the file identified by FileHandle beginning with the file's internal pointer location. The number of
bytes set by LenBytes is attempted to be read from the file and stored in the DataBuffer. The NBytes returns the actual
number of bytes read from the file. The DINTvar returns the status of the function's actions (successful or error, see list
on the previous page).

It is recommended for data reliability that open file(s) be closed upon completion of the action that caused
them to be opened (read, write, append, etc). In the event of a power loss, un-written data (cached, file not
closed) will be lost.

FUNCTION_BLOCK FSReadString
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 BT : DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 DATA : STRING[5];
 ReadBytes : UDINT := 5;
 Loc : UDINT := 11;
 fresult : DINT;
 BWR : UDINT;
 END_VAR

 DATA := 'Test value write'; (*set data to store as test*)

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log and append to it*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#13, FileHandle);

 IF (fresult = 0) THEN (*File opened successfully*)
 (*Seek location in file to read from*)
 fresult := EZ_FS_Seek(FileHandle,Loc);
 END_IF;

 IF (fresult = 0) THEN (*Location pointer set*)
 (*read string from file*)
 fresult := EZ_FS_ReadStr(FileHandle,DATA,ReadBytes,BWR);
 BT := UDINT_TO_DINT(BWR);
 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 IF (fresult = 0) THEN (*All file functions successful*)
 (* Send data to Serial Port (UART) as string*)
 while EZ_UartWriteStr(FD_UART3, DATA) <= 0 do (*write to serial port*)
 ;
 end_while;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 616

 END_IF;

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 617

EZ_FS_Seek

Summary:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
Offset Number of bytes to offset the location pointer by (location inside the file) (UDINT).
DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.
 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Format:
DINTvar := EZ_FS_Seek(FileHandle, Offset);

The EZ_FS_Seek function is used to locate a position (pointer position) within an open file. This location would typically
be used for writing or reading data (See reading and writing functions EZ_FS_xxx). For writing data, this is typically the
end of the file. A file must be open for this function to operate.

Arguments:

Continued Next Page------»

The EZ_FS_Seek function seeks and places the location pointer in the file identified by FileHandle, offset by the Offset
number of bytes. The DINTvar returns the function status (successful or error - See list above.) Typically this function is
used to locate the end of a file for writing (requires the use of the EZ_FS_Size function) but it can be used to position to
read / write data at any position in the file.

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 618

FUNCTION_BLOCK FSSeekWrite
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 DATA : STRING[50];
 fresult : DINT;
 FS : DINT;
 BWR : UDINT;
 END_VAR

 DATA := 'Written 2 End Current File Opened'; (*set data to store as test*)

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log /create if not exist*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#13, FileHandle);

 IF (fresult = 0) THEN (*File opened or created successfully*)
 (*Get size of file*)
 FS := EZ_FS_Size(FileHandle);

 (*Seek end of file*)
 fresult := EZ_FS_Seek(FileHandle,DINT_TO_UDINT(FS));
 END_IF;

 IF (fresult = 0) THEN (*File end found*)
 (*Write test string to file*)
 fresult := EZ_FS_WriteStr(FileHandle,DATA,BWR);

 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 619

EZ_FS_Size

Summary:

The EZ_FS_Size function reads and returns the file size of the file identified by FileHandle. The DINTvar return value is
the actual size of the file in bytes. A file must be opened for this function to operate (see the EZ_FS_Open function).

Description:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
DINTvar Function return holding variable (DINT). Returns the number of bytes in the file identified by
 FileHandle.

Format:
DINTvar := EZ_FS_Size(FileHandle);

The EZ_FS_Size function is used read and return a file system (SD Card) file size in bytes.

Arguments:

FUNCTION_BLOCK FSSeekWrite
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 DATA : STRING[50];
 fresult : DINT;
 FS : DINT;
 BWR : UDINT;
 END_VAR

 DATA := 'Written 2 End Current File Opened'; (*set data to store as test*)

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log /create if not exist*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#13, FileHandle);

 IF (fresult = 0) THEN (*File opened or created successfully*)
 (*Get size of file*)
 FS := EZ_FS_Size(FileHandle);

 (*Seek end of file*)
 fresult := EZ_FS_Seek(FileHandle,DINT_TO_UDINT(FS));
 END_IF;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 620

 IF (fresult = 0) THEN (*File end found*)
 (*Write test string to file*)
 fresult := EZ_FS_WriteStr(FileHandle,DATA,BWR);

 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 621

EZ_FS_Truncate

Summary:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.
 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Format:
DINTvar := EZ_FS_Truncate(FileHandle);

The EZ_FS_Truncate function is used to truncate an open file (contents and size) based on the file pointer location
(within the file). A file must be open (see the EZ_FS_Open function) and the file's internal location pointer be set (see
the EZ_FS_Seek function) to the desired location.

Arguments:

Continued Next Page------»

The EZ_FS_Truncate function actually truncates the file (contents and file size) at the file's current location pointer
(internal to the file). The function EZ_FS_Seek is used to set the file's current location point. This function works only on
the open file identified in the FileHandle. The Dint returns the function status (successful or error, see list above).

For example, if the file's locaton point were set at the beginning of a file and the EZ_FS_Truncate was called, the file
would be erased and file size set to zero. If the file's locaton point were set at the middle of a file and the EZ_FS_Trun-

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 622

cate was called, the last half of the file file would be erased and file size set to half the original size. If the file's locaton
point were set at the end of a file and the EZ_FS_Truncate was called, the file would not be affected at all.

FUNCTION_BLOCK FSTrunc
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 fresult : DINT;
 Offset : UDINT := 20;
 END_VAR

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#13, FileHandle);

 IF (fresult = 0) THEN (*File opened or created successfully*)
 (*Locate file point 20 bytes into file*)
 fresult := EZ_FS_Seek(FileHandle,Offset);
 END_IF;

 IF (fresult = 0) THEN (*Pointer Located*)
 (*Truncate file*)
 fresult := EZ_FS_Truncate(FileHandle);
 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 623

EZ_FS_Write

Summary:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
DataBuffer Data to be written to the file (Array of USINT).
Offset Offset / Location into the DataBuffer to start writing from (UDINT). This is the location in the
 DataBuffer that will be the beginning point where data that will be written to the file will be read
 from.
Len Length of data in bytes from DataBuffer to write to the file (UDINT) beginning with Offset.
NBytes Number of Bytes actually written to the file (UDINT). Returned from the function
DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.
 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Format:
DINTvar := EZ_FS_Write(FileHandle, DataBuffer, Offset, Len, NBytes);

The EZ_FS_Write function is used write data to the file system (SD Card). To use the EZ_FS_Write function, a file must
be open (see EZ_FS_Open) and the location in the file to write to (usually the end) (see EZ_FS_Seek or Append Mode
of EZ _FS_Open).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 624

The EZ_FS_Write function writes data from DataBuffer variable to the file identified by the FileHandle. A file must al-
ready be open and location to write to (usually the end of the file) (See the functions EZ_FS_Open and EZ_FS_Seek).
The Offset variable identifies the beginning point within the DataBuffer to begin getting data to write to the file. The Len
variable identifies the number of bytes to gather from DataBuffer and write to the file. The number of bytes actually writ-
ten to the file is returned by the NBytes variable. The DINTvar returns the status of the function (success or error). See
the list on the previous page.

Description:

FUNCTION_BLOCK FSWrite
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 BYT: DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 BWR : UDINT;
 Offset : UDINT := 10;
 Length : UDINT := 6;
 fresult : DINT;
 DATA : ARRAY[0..15] of USINT;
 END_VAR

 (* Set values of data in byte array to send*)
 DATA[0] := 48; DATA[1] := 49; DATA[2] := 50; DATA[3] := 51; DATA[4] := 52; DATA[5] := 53; DATA[6] := 54;
 DATA[7] := 55; DATA[8] := 56; DATA[9] := 57; DATA[10] := 65; DATA[11] := 66; DATA[12] := 67; DATA[13] := 68;
 DATA[14] := 69; DATA[15] := 70;

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log and append to it*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#112, FileHandle);

 IF (fresult = 0) THEN (*File opened or created successfully*)
 (*Write data array to file*)
 fresult := EZ_FS_Write(FileHandle,DATA,Offset,Length,BWR);
 BYT := UDINT_TO_DINT(BWR); (*Convert to DINT to view in ladder*)
 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 625

EZ_FS_WriteStr

Summary:

FileHandle The file system File identification of the file (DINT).This value is generated by the file system
 when an EZ_FS_Open structured text function is called automatically. This FileHandle must be
 used by all EZ_FS_ (file system) structured text commands when accessing this file (it must be
 kept until the file is closed).
Data String data to be written to the file. Can be entered directly or as variable (STRING).
NBytes Number of Bytes actually written to the file (UDINT). Returned from the function.
DINTvar Function return holding variable (DINT). Returns the status of the function block. The codes
 are:
 Value Description
 0 File operation succeeded with no errors.
 1 A hard error occurred. The SD Card may have a problem. All file system
 functions will not work except for EZ_FS_CLOSE.
 2 Assertion Failed. A problem may exist with the FAT file structure.
 3 The physical drive cannot be accessed. Verify the SD Card is installed.
 4 File Not Found - Verify the file exists or create the file on the SD Card
 5 The file path was not found - Verify the path is correct to the file.
 6 The file path name (string) is invalid. Correct the path name (string).
 7 Access Denied. Access is prohibited as due to incorrect file system flag (see
 EZ_FS_Open) or the directory is full.
 8 Access Denied. A duplicate name is trying to be used and duplicate names are
 not allowed.
 9 The file or file directory object is invalid. The file may have been closed or not
 opened.
 10 Write Protected. The SD Card is write protected.
 11 Drive Number is invalid. An invalid drive number was used in the path name
 (string).
 13 There is no valid FAT volume. The SD Card needs formatted to FAT 16 or 32.
 The SD card FAT file system may be corrupted or the SD Card may have
 failed.
 15 The file system operation did not complete in the allotted time
 16 The file / file system is currently locked by another function or process and not
 and is not available. Retry after the lock is released.
 17 Long File Name buffer could not be created due to memory allocation or size.
 18 Too Many files are open. The maximum number of allowed open files has
 been reached.
 19 Invalid parameter. A parameter used is invalid.

Format:
DINTvar := EZ_FS_WriteStr(FileHandle, Data, NBytes);

The EZ_FS_WriteStr function is used to write string data to the file system (SD Card). The string data can be formatted
using other structured text functions as required. To use the EZ_FS_WriteStr function, a file must be open (see EZ_FS_
Open) and the location in the file to write to (usually the end) (see EZ_FS_Seek or Append Mode of EZ _FS_Open).

Arguments:

Continued Next Page------»

The EZ_FS_WriteStr function writes string data as directly entered or by Data variable to the file identified by the File-
Handle. A file must already be open and location to write to (usually the end of the file) (See the functions EZ_FS_Open
and EZ_FS_Seek). The number of bytes actually written to the file is returned by the NBytes variable. The DINTvar
returns the status of the function (success or error). See the list above.

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 626

It is recommended for data reliability that open file(s) be closed upon completion of the action that caused
them to be opened (read, write, append, etc). In the event of a power loss, un-written data (cached, file not
closed) will be lost.

FUNCTION_BLOCK FileSystem
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 R: DINT;
 END_VAR
 VAR
 FileHandle : DINT;
 LastEnable : bool;
 DATA : STRING[40];
 BWR : UDINT;
 fresult : DINT;
 END_VAR

 DATA := 'Test value write'; (*set data to store as test*)

 (*Rising Edge only*)
 IF ((Enable = 1) AND (LastEnable = 0)) THEN
 (*Open / Create file test1.log and append to it*)
 fresult := EZ_FS_Open('m:\\test1.log', 16#112, FileHandle);

 IF (fresult = 0) THEN (*File opened or created successfully*)
 (*Write test string to file*)
 fresult := EZ_FS_WriteStr(FileHandle,DATA,BWR);
 END_IF;

 (*Close file after use - Always*)
 fresult := EZ_FS_Close(FileHandle);

 R := fresult;
 END_IF;

 LastEnable := Enable;
 Q := Enable;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 627

EZ_GetBootloaderVersion
Summary:

Example:

The EZ_GetBootloaderVersion reads the actual PLC on a Chip (hardware target) stored Bootloader version number.
The typical bootloader version is formatted as: xxx.xxx.xxx.xxx. The number of digits can vary. For example, the version
may be 1.1.4.0. This can be useful, depending upon the application for identifying the version number for compatibility
and sending the version number using communications or to a local display.

Description:

Array[] Byte buffer Array of unsigned integer (USINT) bytes (4 minimum) to store the returned version numbers
 into.
Offset DINT. Location (number of bytes) into the array of unsigned integers (Array[] Byte buffer) to
 begin writing the version information. It will write starting at this byte offset and write all four
 bytes.

Format:
EZ_GetBootloaderVersion(Array[] of Byte buffer, Offset);

The EZ_GetBootloaderVersion function reads and returns the current hardware target's on-board Bootloader software
version number into an array of 4 bytes of unsigned integers (USINT).

Arguments:

FUNCTION_BLOCK FB_BootLDRinfo
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 VB1: DINT;
 VB2: DINT;
 VB3: DINT;
 VB4: DINT;
 END_VAR
 VAR
 lastEn : bool;
 BootloaderVer : array[0..3] of USINT;
 END_VAR

 if(Enable = True) AND (lastEn = False) then
 EZ_GetBootloaderVersion(BootloaderVer, 0); (* Get bootloader USINT bytes *)

 VB1:= USINT_TO_DINT(BootloaderVer[0]); (* Convert to DIN for output of FB *)
 VB2:= USINT_TO_DINT(BootloaderVer[1]); (* Convert to DIN for output of FB *)
 VB3:= USINT_TO_DINT(BootloaderVer[2]); (* Convert to DIN for output of FB *)

This example reads the bootloader version and converts each individual USINT byte into a DINT and stores it in the
VB1 - VB4 variables. These are outputs in the ladder program. The USINT bytes or DINT values can be used using
other functions to display to the LCD (if available) or send via communications (serial, etc).

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 628

 VB4:= USINT_TO_DINT(BootloaderVer[3]); (* Convert to DIN for output of FB *)

 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 629

EZ_GetKernelVersion
Summary:

Example:

The EZ_GetKernelVersion reads the actual PLC on a Chip (hardware target) stored kernel version number. The typical
kernel version is formatted as: xxx.xxx.xxx.xxx. The number of digits can vary. For example, the version may be 1.1.4.0.
This can be useful, depending upon the application for identifying the version number for compatibility and sending the
version number using communications or to a local display.

Description:

Array[] Byte buffer Array of unsigned integer (USINT) bytes (4 minimum) to store the returned version numbers
 into.
Offset DINT. Location (number of bytes) into the array of unsigned integers (Array[] Byte buffer) to
 begin writing the version information. It will write starting at this byte offset and write all four
 bytes.

Format:
EZ_GetKernelVersion(Array[] of Byte buffer, Offset);

The EZ_GetKernelVersion function reads and returns the current hardware target's on-board loaded kernel software
version number into an array of 4 bytes of unsigned integers (USINT).

Arguments:

FUNCTION_BLOCK FB_Krnlinfo
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 VB1: DINT;
 VB2: DINT;
 VB3: DINT;
 VB4: DINT;
 END_VAR
 VAR
 lastEn : bool;
 KrnlVer : array[0..3] of USINT;
 END_VAR

 if(Enable = True) AND (lastEn = False) then
 EZ_GetKernelVersion(KrnlVer, 0); (* Get Kernel Version USINT bytes *)

 VB1:= USINT_TO_DINT(KrnlVer[0]); (* Convert to DIN for output of FB *)
 VB2:= USINT_TO_DINT(KrnlVer[1]); (* Convert to DIN for output of FB *)
 VB3:= USINT_TO_DINT(KrnlVer[2]); (* Convert to DIN for output of FB *)

This example reads the kernel version and converts each individual USINT byte into a DINT and stores it in the VB1
- VB4 variables. These are outputs in the ladder program. The USINT bytes or DINT values can be used using other
functions to display to the LCD (if available) or send via communications (serial, etc).

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 630

 VB4:= USINT_TO_DINT(KrnlVer[3]); (* Convert to DIN for output of FB *)

 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 631

EZ_GetLadderBuild
Summary:

Example:

The EZ_GetLadderBuild reads the actual ladder diagram build number. The build number is a single number. The build
number automatically increments each time the ladder diagram is compiled in EZ LADDER. It can also be changed in
the EZ LADDER Project Settings Menu, the version tab. This build maybe useful, depending upon the application for
reporting purposes and sending the build number using communications or to a local display.

Description:

varUDINT Unsigned Double Integer (UDINT). This variable is used to store the current ladder build into when
 read by the function.

Format:
varUDINT := EZ_GetLadderBuild();

The EZ_GetLadderBuild function reads and returns the target's loaded ladder diagram software Build number into an
array of 4 bytes of unsigned integers (USINT). The build number increments automatically each time a program is com-
piled (unless changed in the Project settings, version tab).

Arguments:

FUNCTION_BLOCK FB_LDRBuildinfo
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 BLD: DINT;
 END_VAR
 VAR
 lastEn : bool;
 LdrBuild : UDINT;
 END_VAR

 if(Enable = True) AND (lastEn = False) then
 LDrBuild:= EZ_GetLadderBuild(); (* Get Ladder Build *)
 BLD:= UDINT_TO_DINT(LDrBuild);
 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

This example reads the build and converts it into a DINT and stores it in the BLD variable. The BLD variable is an
output in the ladder program. The UDINT or DINT values can be used using other functions to display to the LCD (if
available) or send via communications (serial, etc).

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 632

EZ_GetLadderVersion
Summary:

Example:

The EZ_GetLadderVersion reads the actual running ladder diagram's version number. This version is set by the pro-
grammer in the Project Settings menu's version tabl. (The typical ladder diagram version is formatted as: xxx.xxx.xxx.
xxx. The number of digits can vary. For example, the version may be 1.1.4.0. This can be useful, depending upon the
application for identifying the version number for compatibility and sending the version number using communications
or to a local display.

Description:

Array[] Byte buffer Array of unsigned integer (USINT) bytes (4 minimum) to store the returned version numbers
 into.
Offset DINT. Location (number of bytes) into the array of unsigned integers (Array[] Byte buffer) to
 begin writing the version information. It will write starting at this byte offset and write all four
 bytes.

Format:
EZ_GetLadderVersion(Array[] of Byte buffer, Offset);

The EZ_GetLadderVersion function reads and returns the current hardware target's on-board loaded ladder diagram
software version number into an array of 4 bytes of unsigned integers (USINT).

Arguments:

FUNCTION_BLOCK FB_LDRinfo
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 VB1: DINT;
 VB2: DINT;
 VB3: DINT;
 VB4: DINT;
 END_VAR
 VAR
 lastEn : bool;
 LadderVer : array[0..3] of USINT;
 END_VAR

 if(Enable = True) AND (lastEn = False) then
 EZ_GetLadderVersion(LadderVer, 0); (* Get Ladder Diagram version USINT bytes *)

 VB1:= USINT_TO_DINT(LadderVer[0]); (* Convert to DIN for output of FB *)
 VB2:= USINT_TO_DINT(LadderVer[1]); (* Convert to DIN for output of FB *)

This example reads the ladder diagram version and converts each individual USINT byte into a DINT and stores it in
the VB1 - VB4 variables. These are outputs in the ladder program. The USINT bytes or DINT values can be used using
other functions to display to the LCD (if available) or send via communications (serial, etc).

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 633

 VB3:= USINT_TO_DINT(LadderVer[2]); (* Convert to DIN for output of FB *)
 VB4:= USINT_TO_DINT(LadderVer[3]); (* Convert to DIN for output of FB *)

 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 634

EZ_GetSerialNumber

Summary:

Example:

The EZ_GetSerialNumber reads the actual PLC on a Chip (hardware target) stored Serial Number and returns the se-
rial number as DINTvar.

Description:

DINTvar Function return holding variable (DINT). Returns the actual stored hardware target's Serial
 Number (stored in the PLC on a Chip).

Format:
DINTvar := EZ_GetSerialNumber();

The EZ_GetSerialNumber function reads and returns the current hardware target serial number that is stored in the
PLC on a Chip.

Arguments:

FUNCTION_BLOCK ReadSN
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_TEMP
 FncReturn : DINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 SNum: DINT;
 END_VAR

 IF Enable = True THEN; (*Check for function enabled?*)
 FncReturn := EZ_GetSerialNumber(); (*Read Serial Number from unit*)
 SNum := FncReturn; (*Copy to output var to view*)
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 635

FUNCTION_BLOCK GetTickCount
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 Cval: DINT;
 END_VAR
 VAR_TEMP
 Tmx : UDINT;
 Tval: DINT;
 END_VAR

 IF Enable = 1 THEN;
 Tval := UDINT_TO_DINT(EZ_GetTickCount()); (*Get tickcount and convert to DINT to make viewable*)
 Cval := Tval; (*Copy to output variable to view*)
 ELSE
 Tval := 0; (*Update output vars with 0*)
 End_If;
 Q := Enable;
END_FUNCTION_BLOCK

Example:

The EZ_GetTickCount queries the PLC on a Chip and returns the number of milliseconds (ticks) since the system was
started (powered up).

Description:

UDINTvar Returns the number of elapsed milliseconds since the system started.

Format:
UDINTvar := EZ_GetTickCount();

The EZ_GetTickCount function is used get the current PLC on a Chip processor Tick count.

EZ_GetTickCount

Summary:

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 636

EZ_GPIO_Init

Summary:

Example:

The EZ_GPIO_Init configures PLC on a Chip device GPIO (general purpose I/O) pins from structured text as either
input or output and can set a pull-up or pull-down mode of operation. As this function configures GPIO directly from
structured text, the GPIO is not required to be added or configured in the ladder diagram. Once GPIO is configured,
structured text function blocks can access the GPIO directly without any ladder diagram integration.

This function may also be called without the use of the Boolvar variable as shown in the example.

This function should only be used to configure GPIO not configured in the ladder diagram.

Description:

GPIOnum GPIO pin number to configure (UDINT). This is the actual GPIO number (not a variable name
 associated with the GPIO number.
PinSel Pin configuration. Enter 16#100 for digital input or 16#200 for digital output (UDINT).
Mode Configurable Pull-up or Pull-down mode. 1 for pull-down, 2 for pull-up (PLC on Chip internal
 resistance)(UDINT).
BOOLvar Function return holding variable (BOOL). Returns true (1) when configuration is successful.

Format:
BOOLvar := EZ_GPIO_Init(GPIOnum, PinSel, Mode);

The EZ_GPIO_Init function is used to initialize and configure GPIO pins (PLC on a Chip Digital I/O) from structured text
as an input pin or an output pin.

Arguments:

FUNCTION_BLOCK ConfigIO
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_TEMP
 Tmp : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 IF Enable = 1 Then;

 Tmp := EZ_GPIO_Init(118,16#100,2); (*Configure I/O Input using variable to call*)

 EZ_GPIO_Init(119,16#100,2); (*Configure I/O Input without variable to call*)
 EZ_GPIO_Init(124,16#200,2); (*Configure I/O output without variable to call*)
 EZ_GPIO_Init(125,16#200,2); (*Configure I/O output without variable to call*)

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 637

EZ_GPIO_Read

Summary:

Example:

The EZ_GPIO_Read directly accesses the digital input from the structured text (outside of the ladder diagram digital
I/O) and reads the current status of the input then returns the status as Boolvar. A zero represents false and a 1 repre-
sents true.

Description:

GPIOnum GPIO number to read the current status (UDINT). This is the actual GPIO number (not a vari
 able name associated with the GPIO number.
BOOLvar Function return holding variable (BOOL). Returns the actual status of the digital input as true
 (1) or false (0).

Format:
BOOLvar := EZ_GPIO_Read(GPIOnum);

The EZ_GPIO_Read function is used to read the current status of a GPIO (digital input) within a structured text function
or function block.

Arguments:

FUNCTION_BLOCK ReadGPIO
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_TEMP
 Input1 : bool;
 Input2 : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 IF Enable = 1 THEN;

 Input1:=EZ_GPIO_READ(7); (* Read GPIO Input *)
 Input2:=EZ_GPIO_READ(9); (* Read GPIO Input *)

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 638

EZ_GPIO_Write

Summary:

Example:

The EZ_GPIO_Write directly accesses the digital output from the structured text (outside of the ladder diagram digital
I/O) and sets the current State of the output. A zero represents false and a 1 represents true. There is no return value
from this function.

Description:

GPIOnum GPIO number to set the current state of (UDINT). This is the actual GPIO number (not a vari
 able name associated with the GPIO number.
State The desired state to set the GPIO (digital output) to (true or 1, false or 0) (BOOL)

Format:
EZ_GPIO_Write(GPIOnum,State);

The EZ_GPIO_Write function is used to set the current state of a GPIO (digital output) within a structured text function
or function block.

Arguments:

FUNCTION_BLOCK WriteGPIO
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 IF Enable = 1 THEN;

 EZ_GPIO_Write(122,1); (* Write GPIO ON *)
 EZ_GPIO_Write(123,0); (* Write GPIO OFF *)

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 639

EZ_GPS_GetDateTimeUTC

Summary:

Example:

The EZ_GPS_GetDateTimeUTC reads and decodes the message RMC from the satellite via the GPS and then returns
the Tick (system tick time) and variables for the date and time. The BoolVar return variable is set 1 or True for as long
as data is not older than 2 seconds (2 seconds since last message was received). This return value and the Tick time
may be used to identify if the GPS data is valid. The date / time when valid may be used to sycn a real time clock or for
data-logging (with our without real time clock).

Description:

BOOLvar Return status holding variable (BOOL). Set to 1 or True when data is valid (data received
 within last 2 seconds). Set to 0 or False when data is invalid (data not received within last 2
 seconds).
Tick Tick time the last message was received.(UDINT)
Month Message returned date value for Month (DINT).
Day Message returned date value for Day (DINT).
Year Message returned date value for Year (DINT).
Hour Message returned time value for Hour (DINT).
Minute Message returned time value for Minute (DINT).
Second Message returned time value for Second (DINT).

Format:
BOOLvar := EZ_GPS_GetDateTimeUTC(Tick,Month,Day,Year,Hour,Minute,Second);

The EZ_GPS_GetDateTimeUTC function is used to access the GPS message RMC and return the current month, day,
year, hour, minute and second that was received from the GPS satellite. A sytem tick time is also received to identify
when the last data was received.

Arguments:

FUNCTION_BLOCK GPSDateTime
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 valid : bool := False;
 MN : DINT;
 DY : DINT;
 YR : DINT;
 HR : DINT;
 MNT : DINT;
 SEC : DINT;
 END_VAR
 VAR
 tickRecv : UDINT;
 lastTickRecv : UDINT;
 month : DINT;
 day : DINT;
 year : DINT;
 hours : DINT;
 minutes : DINT;

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 640

 seconds : DINT;
 END_VAR

 IF (Enable = TRUE) THEN;
 valid := EZ_GPS_GetDateTimeUTC(tickRecv,month,day,year,hours,minutes,seconds);
 MN := month;
 DY := day;
 YR := year;
 HR := hours;
 MNT := minutes;
 SEC := seconds;

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 641

EZ_GPS_GetMovement

Summary:

Example:

The EZ_GPS_GetMovement reads and decodes the message RMC from the satellite via the GPS and then returns
the Tick (system tick time) and variables for the Speed (speed over the ground in knots) and Course (Track angle in
degrees). The BoolVar return variable is set 1 or True for as long as data is not older than 2 seconds (2 seconds since
last message was received). This return value and the Tick time may be used to identify if the GPS data is valid.

Description:

BOOLvar Return status holding variable (BOOL). Set to 1 or True when data is valid (data received
 within last 2 seconds). Set to 0 or False when data is invalid (data not received within last 2
 seconds).
Tick Tick time the last message was received.(UDINT)
Speed Speed over the ground in Knots (REAL).
Course Course - Track angle in degrees (REAL).

Format:
BOOLvar := EZ_GPS_GetMovement(Tick,Speed, Course);

The EZ_GPS_GetMovement function is used to access the GPS message RMC and return the speed of movement
and course of movement for the GPS receiver. A sytem tick time is also received to identify when the last data was
received.

Arguments:

FUNCTION_BLOCK GPSMove
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 valid : bool := FALSE;
 SPD : REAL;
 CRSE: REAL;
 END_VAR
 VAR
 tickRecv : UDINT;
 speed : REAL;
 course : REAL;
 END_VAR

 IF (Enable = TRUE) THEN
 valid := EZ_GPS_GetMovement(tickRecv,speed,course);
 SPD := speed;
 CRSE:= course;

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 642

EZ_GPS_GetPosition

Summary:

Example:

The EZ_GPS_GetPosition reads and decodes the message GGA from the satellite via the GPS and then returns the
Tick (system tick time) and variables for the Sats (number of satelites used), Latitude, Longitude, and Altitude (meters).
The BoolVar return variable is set 1 or True for as long as data is not older than 2 seconds (2 seconds since last mes-
sage was received). This return value and the Tick time may be used to identify if the GPS data is valid.

This data received using this function cannot be passed directly to the ladder diagram without data type conversions as
the data types are not supported directly in the ladder diagram. The data may be sent via serial (UART), LCD display
and VersaCloud M2M+IoT or COAP cloud solutions as a string.

Description:

BOOLvar Return status holding variable (BOOL). Set to 1 or True when data is valid (data received
 within last 2 seconds). Set to 0 or False when data is invalid (data not received within last 2
 seconds).
Tick Tick time the last message was received.(UDINT)
Sats # of Satelites used (BYTE).
Latitude Latitude (LREAL). Format: +/-dddmm.sss for degrees + minutes + seconds
 + for East, - for West
Longitude Longitude (LREAL). Format: +/-dddmm.sss for degrees + minutes + seconds
 + for North, - for South
Altitude Altitude in meters.(REAL).

Format:
BOOLvar := EZ_GPS_GetPosition(Tick,Sats,Latitude,Longitude,Altitude);

The EZ_GPS_GetPosition function is used to access the GPS message GGA and return location information includ-
ing # of satellites, latitude, longitude, and altitude. A sytem tick time is also received to identify when the last data was
received.

Arguments:

FUNCTION_BLOCK GPSpos
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 valid : bool := FALSE;
 END_VAR
 VAR
 tickRecv : UDINT;
 lastTickRecv : UDINT;
 satsUsed : BYTE;
 latitude : LREAL;
 longitude : LREAL;
 altitude : REAL;
 buffer : string[200];

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 643

 buffer2 : string[100];
 END_VAR

 IF (Enable = TRUE) THEN
 valid := EZ_GPS_GetPosition(tickRecv,satsUsed,latitude,longitude,altitude);

 if (tickRecv <> lastTickRecv) then

 (*Since data format not supported in ladder - using LCD and serial port to view data*)

 EZ_FormatString(buffer, 'valid: %d, tickRecv: %d, satsUsed: %d, latitude: %f, longitude: %f,
altitude: %f $N', valid, tickRecv, satsUsed, latitude, longitude, altitude);
 EZ_FormatString(buffer2, 'lat:%f', latitude); (*Write latitude to LCD display*)
 EZ_LcdWrite(0,0,buffer2);
 EZ_FormatString(buffer2, 'long:%f', longitude); (*Write longitude to LCD display*)
 EZ_LcdWrite(1,0,buffer2);
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*Write all values to Serial Port*)
 ;
 end_while;
 lastTickRecv := tickRecv;
 end_if;
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 644

EZ_GPS_GetPrecision

Summary:

Example:

The EZ_GPS_GetPrecision reads and decodes the message GSA from the satellite via the GPS and then returns the
Tick (system tick time) and variables for the Fix (3D fix quality), PDOP (Dilution of Precision), HDOP (Horizontal Dilution
of Precision) and VDOP (Vertical Dilution of Precision). The BoolVar return variable is set 1 or True for as long as data
is not older than 2 seconds (2 seconds since last message was received). This return value and the Tick time may be
used to identify if the GPS data is valid.

Description:

BOOLvar Return status holding variable (BOOL). Set to 1 or True when data is valid (data received
 within last 2 seconds). Set to 0 or False when data is invalid (data not received within last 2
 seconds).
Tick Tick time the last message was received.(UDINT)
Fix 3D Fix Quality (BYTE). 1 = No fix, 2 = 2D fix, 3 = 3D fix.
PDOP Dilution of Precision (REAL).
HDOP Horizontal Dilution of Precision (REAL).
VDOP Vertical Dilution of Precision (REAL).

Format:
BOOLvar := EZ_GPS_GetPrecision(Tick,Fix,PDOP,HDOP,VDOP);

The EZ_GPS_GetPrecision function is used to access the GPS message GSA and return the precision of measure-
ment including 3D Fix quality, Dilution of Precisioin (PDOP), Horizontal Dilution of Precision (HDOP) and Vertical Dilu-
tion of Precision (VDOP). A sytem tick time is also received to identify when the last data was received.

Arguments:

FUNCTION_BLOCK GPS_Prec
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 valid : bool := FALSE;
 END_VAR
 VAR
 tickRecv : UDINT;
 lastTickRecv : UDINT;
 mode2 : BYTE;
 pdop : REAL;
 hdop : REAL;
 vdop : REAL;
 buffer : string[200];
 END_VAR

 IF (Enable = TRUE) THEN
 valid := EZ_GPS_GetPrecision(tickRecv,mode2,pdop,hdop,vdop);

 if (tickRecv <> lastTickRecv) then

 (* Send data to Serial Port (UART) as string*)

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 645

 EZ_FormatString(buffer, 'valid: %d, tickRecv: %d, mode2: %d, pdop: %f, hdop: %f, vdop: %f
$N', valid, tickRecv, mode2, pdop, hdop, hdop);

 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*write to serial port*)
 ;
 end_while;
 lastTickRecv := tickRecv;
 end_if;
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 646

EZ_I2CReadData

Summary:

varDINT DINT. Returns status of function.
 Negative Number for error or positive number is the number of bytes transferred from
 the I2C device.
FileDescriptor FD_I2Cx for the I2C port to use. x is the I2C port number. This file descriptor is
 found with other file descriptors (FD) in the structured text editor (Variables tab at the bottom).
 Hard-coded or use DINT variable.
flags UDINT. Bit flags for writing the start and stop bits.
 These values can be ANDed together and used at the same time
 1 : Write start bit at start of transfer.
 2: Write stop bit at end of transfer
clock UDNIT. Clock rate in KHz. Maximum 1 MHz allowed.
data ARRAY OF USINT. Used as a buffer to store the received data into.
length UDINT. Number of bytes to transfer from the device.

Format:
varDINT:=EZ_I2CReadData(FileDescriptor, flags, clock, data, length);

The EZ_I2CReadData function is to receive data from an I2C device on a P-Series PLC on Chip I2C bus. This func-
tion makes it possible to add I2C devices to a PLC on Chip design and interface with them. Refer to Chapter 16 - I2C
Devices for more details on supported I2C devices and using I2C.

 This function as others with I2C Custom Device Communications requires knowledge of I2C bus architecture
 and an understanding of implementing I2C communications to devices with different configuration parameters.

 This function should only be used by those with experience in I2C communications or with direct consutation
 of Divelbiss. Using the function incorrectly could render the I2C bus inoperative or result in loss of stable
 communications.

Arguments:

The EZ_I2CReadData function is used to receive I2C data (Custom Device communications) from I2C devices that are
not natively supported in P-Series PLC on a Chip targets (not listed in the Project Settings Devices). Using the selected
CAN port (FileDescriptor), the function will read data from the I2C device based on the flags and store the received
data in the data variable. The varDINT returns the status of the function (and the number ot bytes transferred if suc-
cessful). The length sets the number of bytes to transfer.

 A high level of understanding of I2C communications is required to use this function. For example: generally,
 the EZ_I2CWriteData function must be used prior to this function (EZ_I2CReadData) to set the address of the
 device.

Description:

FUNCTION_BLOCK FB_Read
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT

Example:

Continued Next Page------»

This example is provided only as an example of function block using the function. It is written to inter-
face to a specific device. Any I2C devices will use the same syntax, but will be different (based on their
needs for commications).

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 647

 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 buf : array[0..31] of byte;
 err1 : dint;
 err2 : dint;
 err3 : dint;
 END_VAR

 Q := Enable;

 if(enable AND NOT lastEn) then
 buf[0] := 16#A0;
 buf[1] := 16#20;
 err1 := EZ_I2CWriteData(FD_I2C0, 16#01, 400, buf, 2);
 buf[0] := 16#A1;
 err2 := EZ_I2CWriteData(FD_I2C0, 16#01, 400, buf, 1);
 err3 := EZ_I2CReadData(FD_I2C0, 16#02, 400, buf, 32);

 end_if;

 lastEn := enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 648

EZ_I2CWriteData

Summary:

varDINT DINT. Returns status of function.
 Negative Number for error or positive number is the number of bytes transferred from
 the I2C device.
FileDescriptor FD_I2Cx for the I2C port to use. x is the I2C port number. This file descriptor is
 found with other file descriptors (FD) in the structured text editor (Variables tab at the bottom).
 Hard-coded or use DINT variable.
flags UDINT. Bit flags for writing the start and stop bits.
 These values can be ANDed together and used at the same time
 1 : Write start bit at start of transfer.
 2: Write stop bit at end of transfer
clock UDNIT. Clock rate in KHz. Maximum 1 MHz allowed.
data ARRAY OF USINT. Variable of data to send to I2C device.
length UDINT. Number of bytes to transfer to the device.

Format:
varDINT:=EZ_I2CWriteData(FileDescriptor, flags, clock, data, length);

The EZ_I2CWriteData function is to write data from an I2C device on a P-Series PLC on Chip I2C bus. This function
makes it possible to add I2C devices to a PLC on Chip design and interface with them. Refer to Chapter 16 - I2C De-
vices for more details on supported I2C devices and using I2C.

 This function as others with I2C Custom Device Communications requires knowledge of I2C bus architecture
 and an understanding of implementing I2C communications to devices with different configuration parameters.

 This function should only be used by those with experience in I2C communications or with direct consutation
 of Divelbiss. Using the function incorrectly could render the I2C bus inoperative or result in loss of stable
 communications.

Arguments:

The EZ_I2CWriteData function is used to transmit I2C data (Custom Device communications) to I2C devices that are
not natively supported in P-Series PLC on a Chip targets (not listed in the Project Settings Devices). Using the se-
lected CAN port (FileDescriptor), the function will send data in the variable data to the I2C device based on the flags.
The varDINT returns the status of the function (and the number ot bytes transferred if successful). The length sets the
number of bytes to transfer.

 A high level of understanding of I2C communications is required to use this function. For example: generally,
 the EZ_I2CWriteData function must be used prior to this function (EZ_I2CReadData) to set the address of the
 device. An understanding of what is required to interface to I2C devices is required.

Description:

FUNCTION_BLOCK FB_Read
 VAR_INPUT
 Enable : bool;
 END_VAR

Example:

Continued Next Page------»

This example is provided only as an example of function block using the function. It is written to inter-
face to a specific device. Any I2C devices will use the same syntax, but will be different (based on their
needs for commications).

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 649

 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 buf : array[0..31] of byte;
 err1 : dint;
 err2 : dint;
 err3 : dint;
 END_VAR

 Q := Enable;

 if(enable AND NOT lastEn) then
 buf[0] := 16#A0;
 buf[1] := 16#20;
 err1 := EZ_I2CWriteData(FD_I2C0, 16#01, 400, buf, 2);
 buf[0] := 16#A1;
 err2 := EZ_I2CWriteData(FD_I2C0, 16#01, 400, buf, 1);
 err3 := EZ_I2CReadData(FD_I2C0, 16#02, 400, buf, 32);

 end_if;

 lastEn := enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 650

EZ_KeypadGetKey

Summary:

varDINT DINT. Returns the value (ASCII) of the key pressed. Returns -1 if no key is pressed.

 Button values are based on Divelbiss basic keypad layouts.

 Button ASCII Button ASCII Button ASCII Button ASCII
 0 48 5 53 F1/A 65 DOWN/F 70
 1 49 6 54 F2/B 66 ENTER 13
 2 50 7 55 F3/C 67 CLEAR 8
 3 51 8 56 F4/D 68 - 45
 4 52 9 57 UP/E 69 . 46

Format:
varDINT:=EZ_KeypadGetKey();

The EZ_KeypadGetKey function is to get a keypad press from the keypad buffer. All keys are debounced (50mS). Key
autorepeating begins after 500mS and then repeated every 150mS if the button is still pressed.

 This function requires the hardware (target) to support and have installed a keypad using the standard keypad
 inteface for PLC on a Chip.

Arguments:

The EZ_KeypadGetKey function is read a current keypress from a keypad and return the ASCII value or -1 if no key is
pressed. The ASCII values are based on the arguments above and the Divelbiss basic keypad matrix.

All keys are debounce (50mSec) and provide a repeat feature. Autorepeating begins if a button has been pressed for
500mSec and then the values is repeated every additional 150mSec the button is still pressed.

 If more than one key is pressed, none will be returned. Multiple keypresses are not supported at this time.

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 651

EZ_LcdClear

Summary:

Example:

The EZ_LcdClear directly accesses the LCD display and erases (clears) all displayed values, text and/or graphics.
Description:

No arguments are required.

Format:
EZ_LcdClear();

The EZ_LcdClear function is used to clear / erase any displayed value on a connected LCD display. The display must
be configured in the ladder diagram project settings prior to using this function. This function supports the character
(CHR) and graphics (GFX) displays.

Arguments:

FUNCTION_BLOCK ClearLCD
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 IF Enable = 1 THEN;

 EZ_LcdClear();

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 652

EZ_LcdDrawImage

Summary:

Example:

The EZ_LcdDrawImage is used to write / render images to the graphics (GFX) LCD display. The ImageName is the
actual image name of the stored image in the ladder project directory (can be found in the Variables ST editor tab). The
DINTX and DINTY are the coordinates of the display to render the image. The DINT returns a zero when successful.

 The image may be cropped or not display correctly if the image size and location would cause the image to
 have insufficient room for displaying.

Description:

DINT DINT. Returns a 0 for success or non-zero for error.
ImageName STRING. Name of the image file to render (embed).
DINTX DINT. Horizontal (X) starting location to render the image.
DINTY DINT. Vertical (Y) starting location to render the image.

Format:
DINT := EZ_LcdDrawImage(ImageName, DINTX, DINTY);

The EZ_LcdDrawImage function is used to draw / render pre-made images on the graphics (GFX) LCD display. The
images are stored in the same directory as the ladder diagram project file (.dld).

 The images must be stored in the same directory as the ladder diagram project file (.dld) to be embedded for
 display. When located in the correct directory, they will be listed in the Variables tab in the structured text editor.

Arguments:

FUNCTION_BLOCK FB_Logo
 VAR_INPUT
 Enable : bool;
 x : dint;
 y : dint;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

 Q := Enable;

 if NOT lastEn AND Enable then
 EZ_LcdDrawImage('logo', x, y);
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 653

EZ_LcdDrawLine

Summary:

Example:

The EZ_LcdDrawLine is used to write / render a line on the graphics (GFX) LCD display. X and Y locations for starting
and ending the line must be provided. The color (0 for off or non-zero for color (or on for monochrome) must be pro-
vided. The DINT returns a zero when successful or -1 if any of the X or Y positions are invalid.

Description:

DINT DINT. Returns a 0 for succes, -1 if x or y coordinates are invalid
DINTx1 DINT. Starting X (horizontal) position of line
DINTy1 DINT. Starting Y (vertical) position of line
DINTx2 DINT. Ending X (horizontal) position of line
DINTy2 DINT. Ending Y (vertical) position of line
DINTcolor DINT. Line (pixel) Color, 0 for Off. or non-zero for color. Monochrome displays either off or on.

Format:
DINT := EZ_LcdDrawLine(DINTx1, DINTy1, DINTx2, DINTy2, DINTcolor);

The EZ_LcdDrawLine function is used to draw / render a line on the graphics (GFX) LCD display.

Arguments:

FUNCTION_BLOCK FB_DrawLine
 VAR_INPUT
 Enable : bool;
 x1 : dint;
 y1 : dint;
 x2 : dint;
 y2 : dint;
 color : dint;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

 Q := Enable;

 if NOT lastEn AND Enable then
 EZ_LcdDrawLine(x1, y1, x2, y2, color);
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 654

EZ_LcdDrawRectangle

Summary:

Example:

The EZ_LcdDrawRectangle is used to write / render an unfilled rectangle on the graphics (GFX) LCD display. X and
Y locations for starting and ending the rectangle must be provided. The color (0 for off or non-zero for color (or on for
monochrome) for the border must be provided. The DINT returns a zero when successful or -1 if any of the X or Y posi-
tions are invalid.

Description:

DINT DINT. Returns a 0 for succes, -1 if x or y coordinates are invalid
DINTx1 DINT. Starting X (horizontal) position of the rectangle
DINTy1 DINT. Starting Y (vertical) position of rectangle
DINTx2 DINT. Ending X (horizontal) position of rectangle
DINTy2 DINT. Ending Y (vertical) position of rectangle
DINTcolor DINT. Border Color, 0 for Off. or non-zero for color. Monochrome displays either off or on.

Format:
DINT := EZ_LcdDrawRectangle(DINTx1, DINTy1, DINTx2, DINTy2, DINTcolor);

The EZ_LcdDrawRectangle function is used to draw / render an unfilled rectangle on the graphics (GFX) LCD display.
The rectange is always drawn with a 1-pixel border. The border does not affect the inside or fill of the rectangle.

Arguments:

FUNCTION_BLOCK FB_Disp1
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

 Q := Enable;

 if NOT lastEn AND Enable then
 (* draw rectangle*)
 EZ_LcdDrawRectangle(0, 0, 127, 63, 1);
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 655

EZ_LcdDrawRectangleFilled

Summary:

Example:

The EZ_LcdDrawRectangleFilled is used to write / render a filled rectangle on the graphics (GFX) LCD display. X and Y
locations for starting and ending the rectangle must be provided. The DINTborder (0 for off or non-zero for color (or on
for monochrome) for the border must be provided. The DINTfill (0 for off or non-zero for color (or on for monochrome)
for the fill must be provided. The DINT returns a zero when successful or -1 if any of the X or Y positions are invalid.

Using the border color in conjunction with the fill color, the user has the ability to combine fills and border colors to draw
and erase. For example, if a filled rectangle is drawn with a border color set, the area will be completely filled; if both
colors (filled and border) are set to zero, it will clear the screen in that area.

Description:

DINT DINT. Returns a 0 for succes, -1 if x or y coordinates are invalid
DINTx1 DINT. Starting X (horizontal) position of the rectangle
DINTy1 DINT. Starting Y (vertical) position of rectangle
DINTx2 DINT. Ending X (horizontal) position of rectangle
DINTy2 DINT. Ending Y (vertical) position of rectangle
DINTborder DINT. Border Color, 0 for Off. or non-zero for color. Monochrome displays either off or on.
DINTfill DINT. Fill Color, 0 for Off. or non-zero for color. Monochrome displays either off or on.

Format:
DINT := EZ_LcdDrawRectangleFilled(DINTx1, DINTy1, DINTx2, DINTy2, DINTborder, DINTfill);

The EZ_LcdDrawRectangleFilled function is used to draw / render a filled rectangle on the graphics (GFX) LCD display.
The rectange is always drawn with a 1-pixel border. The border does not affect the inside or fill of the rectangle.

Arguments:

FUNCTION_BLOCK FB_Disp
 VAR_INPUT
 Enable : bool;
 br : dint;
 fl : dint;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

 Q := Enable;

 if NOT lastEn AND Enable then
 EZ_LcdDrawRectangleFilled(0, 0, 63, 63, br, fl);
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 656

EZ_LcdInit

Summary:Summary:

Example:

The EZ_LcdInit directly accesses the LCD display initializes / restores the LCD Display communications parameters
and port.

Description:

No arguments are required.

Format:
EZ_LcdInit();

The EZ_LcdInit function is used initialize the LCD Display. This may be used to reinitialize the display from the ladder
diagram program (using structured text). The display must be configured in the ladder diagram project settings prior to
using this function.

Arguments:

FUNCTION_BLOCK INITLCD
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 IF Enable = 1 THEN;

 EZ_LcdInit();

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 657

EZ_LcdSetFont

Summary:

Example:

The EZ_LcdSetFont is used to set the font used on the graphics (GFX) LCD display. Only supported fonts may be used
(at this time only the lcd_6x8 font is supported). DINT returns zero when sucessful.

Description:

DINT DINT. Returns a 0 for success.
StringFont STRING. String name of the font to use (only supported fonts). Supported fonts will appear in
 the Variables tab in the ST editor.

Format:
DINT := EZ_LcdSetFont(StringFont);

The EZ_LcdSetFont function is set the font used on the (GFX) LCD display. Currently, only the default font (lcd_6x8) is
supported.

 The default font (lcd_6x8) is the only supported font at this time. It is automatically set as the font to be used.

Arguments:

FUNCTION_BLOCK FB_Setfont
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

 Q := Enable;

 if NOT lastEn AND Enable then
 (* Init display *)

 EZ_LcdSetFont('lcd_6x8');
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 658

EZ_LcdSetFontSize

Summary:

Example:

The EZ_LcdSetFontSize is used to set the font scaling used on the graphics (GFX) LCD display. DINT returns zero
when sucessful or -1 if the scale is invalid. The scaling may be set from 1 to 4 (size multiplier).

Description:

DINT DINT. Returns a 0 for succes, -1 if scale is invalid
DINTscale DINT. Font size scale to use. Supported scale is 1-4.

Format:
DINT := EZ_LcdSetFontSize(DINTscale);

The EZ_LcdSetFontSize function is used to set the font size (scaling) used on the (GFX) LCD display. This function can
be used multiple times to display multiple sizes of text.

Arguments:

FUNCTION_BLOCK FB_Disp1
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

 Q := Enable;

 if NOT lastEn AND Enable then
 (* Init display *)

 EZ_LcdSetFontSize(2);
 EZ_LcdWriteString(2, 2, 'Test1');

 EZ_LcdSetFontSize(1);
 EZ_LcdWriteString(2, 18, 'Test2 ');
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 659

EZ_LcdSetPixel

Summary:

Example:

The EZ_LcdSetSetPixel is used to to display / control a pixel on the GFX LCD display. The X and Y positions (DINTx ,
DINTy) of the pixel must be provided. The color (DINTcolor) sets the color of the pixel as either 0 for off, or a number for
a color (monochrome displays are 0 for off or a number for on). The DINT returns a zero when successful or a -1 if the
X or Y locations is out of range.

Description:

DINT DINT. Returns a 0 for succes, -1 if x or y coordinates are invalid
DINTx DINT. Starting X (horizontal) position of the pixel
DINTy DINT. Starting Y (vertical) position of the pixel
DINTcolor DINT. Pixel Color, 0 for Off. or non-zero for color. Monochrome displays either off or on.

Format:
DINT := EZ_LcdSetSetPixel(DINTx, DINTy, DINTcolor);

The EZ_LcdSetSetPixel function is used to draw / control a pixel on the (GFX) LCD display. The color of the pixel can
be set (off, color or on for monochrome).

Arguments:

FUNCTION_BLOCK FB_DrawLine
 VAR_INPUT
 Enable : bool;
 x1 : dint;
 y1 : dint;
 color : dint;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

 Q := Enable;

 if NOT lastEn AND Enable then
 EZ_LcdSetSetPixel(x1, y1, color);
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 660

EZ_LcdWrite

Summary:

Example:

The EZ_LcdWrite directly accesses the LCD display from the structured text (outside of the ladder diagram), sets the
current location as the Row and Column then writes (displays) the information in the Data string.

Description:

Row The desired row of the LCD display to display the data to. Rows are numbered 0 to the number
 of rows on the LCD Display. (A 4 row display will be numbered 0 to 3). (DINT)
Column The column in the row to begin writing / displaying the data to. Columns are numbered 0 to the
 number of columns on the LCD Display. (A 16 column display will be numbered 0 to
 15) (DINT)
Data the string of data to write (display) on the LCD display. The data may be preformatted using the
 EZ_FormatString function.

Format:
EZ_LcdWrite(Row,Column,Data);

The EZ_LcdWrite function is used to write / display data on the LCD Display. The display must be configured in the lad-
der diagram project settings prior to using this function.

Arguments:

FUNCTION_BLOCK WRITELCD
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 data : string[16];
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 data := ' Display Line 1 '; (*Set value to display*)

 IF Enable = 1 THEN;

 EZ_LcdWrite(0,0,data);

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 661

EZ_LcdWriteString

Summary:

Example:

The EZ_LcdWriteString directly accesses the LCD display from the structured text (outside of the ladder diagram), sets
the current location as the DINTx and DINTy (horizontal and vertical coordinates) then writes (displays) the information
in the StringData. The optional flags allow for reversed (blocked) text and underlined text. The return value is 0 for suc-
cess for negatie for errors (see above).

Description:

DINT DINT. Returns status of the function (result).
 0 for success
 -3 A character to display was not defined in the font.
 -4 The base font wideth is too large (maximum is 8).
 -100 No Found Setup (Check display configurations)
DINTx DINT. The desired X (horizontal) location of the GFX LCD display to display the data to.
DINTy DINT. The desired Y (vertical) location of the GFX LCD display to display the data to.
StringData STRING. The string of data to write (display) on the GFX LCD display.
UDINTFlag UDINT. Optional The flag determines special display characteristics of the text that is being
 displayed. When not used, normal text is displayed.
 1: Reverse Text
 4: Underlined Text

Format:
DINT := EZ_LcdWriteString(DINTx, DINTy,StringData, UDINTFlag);

The EZ_LcdWriteString function is used to write / display text data on the GFX LCD Display. The display must be con-
figured in the ladder diagram project settings prior to using this function.

Arguments:

FUNCTION_BLOCK FB_Disp1
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn : bool;
 END_VAR

 Q := Enable;

 if NOT lastEn AND Enable then

 EZ_LcdSetFontSize(1);

 EZ_LcdWriteString(2, 26, 'Reverse', 16#1); (* draw with reverse *)
 EZ_LcdWriteString(2, 34, 'Underline', 16#4); (* draw with underline *)
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 662

EZ_ModbusMaster_UartEnableIsr

Summary:

Example:

The EZ_ModbusMaster_UartEnableIsr controls the Modbus Master UART enable (on/off). When the State is 0, the
Modbus Master function for the FileDescriptor UART is enabled (Modbus Read/Write functions work). When the State
is 0, the Modbus Master function for the FileDescriptor UART is disabled (Modbus Read/Write functions don't work).

 The Modbus_Master function block should not be used when disabled. Using the Modbus_Master
 function block after it has been disabled will cause the program to lock up.

Description:

FileDescriptor FD_UART1 for internal PLC on a Chip UART1.
 FD_UART2 for internal PLC on a Chip UART2.
 FD_UART3 for internal PLC on a Chip UART3.
 FD_UART4 for internal PLC on a Chip UART4.
State 0 or 1, False or True for UART Modbus Enable (BOOL)
BOOLvar Function return holding variable (BOOL). Returns the number of bytes read.

Format:
BoolVar := EZ_ModbusMaster_UartEnableIsr(FileDescriptor,State);

The EZ_ModbusMaster_UartEnableIsr is used to enable or diable Modbus Master communications (when the target is
the Modbus Master).

Arguments:

FUNCTION_BLOCK ModbusCtrl
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 FncReturn1 : BOOL;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 IF Enable = 1 THEN; (*Look for Enable*)
 FncReturn1 := EZ_ModbusMaster_UartEnableIsr(FD_UART3,1); (*Enable*)

 ELSE
 FncReturn1 := EZ_ModbusMaster_UartEnableIsr(FD_UART3,0); (*Disable*)

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 663

EZ_MQTT_Connect

Summary:

Enable Connect / Disconnect for MQTT control. (BOOL). 0 for Disconnect, 1 for Connect.
RetryTimeout Time between connection retries in seconds. When set to zero (0), the function will not attempt
 reconnection in the event of a loss of communication (unplanned disconnect). Any other
 seconds entered is the delay time between reconnection attempts (DINT).
Status Status (output) of the connection (or attempt). (DINT). The status returns one of the following
 based on the MQTT state:

 1 Connecting
 2 Provisioning
 3 Provision Sent
 100 Connect Sent
 101 Connected
 200 Connect Error
 300 TLS Handshaking Failed
 301 Authentication Read Error
 302 Authentication Needs Info (causes may include unable to read client ID,
 username or password from EEPROM)
 303 Authentication Invalid User Password
 304 Authentication Not Authorized (Bad Username or Password)
 305 Connection Refused (Invalid Protocol Version)
 306 Connection Refused (Client ID Rejected)
 307 Connection Refused (Server Unavailable)

Error Error (output), if an error detected. (DINT). The erros returns one of the following network
 errors:
 0 No Error
 -1 Out of Memory Error
 -2 Buffer Error
 -3 Timeout Error
 -4 Reverved (Should not see)
 -5 Operation Currently in Progress
 -6 Illegal Value
 -7 Reverved (Should not see)
 -8 Address in Use
 -9 Already Connecting
 -10 Connection Already Established
 -11 Not Connected
 -12 Network Interface Error (Cellular, Ethernet, etc)
 -13 Connection Aborted
 -14 Connection Reset
 -15 Connection Closed

Format:
BoolVar := EZ_MQTT_Connect(Enable,RetryTimeout,Status,Error,NumRetries);

The EZ_MQTT_Connect function attempts to make a connection to a VersaCloud M2M+IoT cloud solution server. This
is similar to the ladder diagram function block, this function provides control via structured text.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 664

Example:

Description:

FUNCTION_BLOCK CnctMQTT
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 rtrytm : DINT;
 Rtn : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 S : DINT;
 E : DINT;
 R : DINT;

 END_VAR

 if(Enable = True) then

 Rtn:= EZ_MQTT_Connect(1,60,S,E,R);

 Else;

 Rtn:= EZ_MQTT_Connect(0,60,S,E,R);

 end_if;

 Q := Enable;

END_FUNCTION_BLOCK

 -16 Illegal Argument

 Additional errors below -8192 are specific to the SSL layter. For example, -9984 is a
 Certificate failed verification (CRL, CA or signature check failed. This can be caused by the
 certificate not matching, if there is not enough free memory (RAM) in the controller or if the
 certificate date is not vaild.

NumRetries Number of retries that have occurred (output). (DINT). This number is cumulative (until target
 reset or power cycle). The larger the number, the more times the function has tried to connect
 to the selected cloud solution (some may be successful, others may not).

The EZ_MQTT_Connect connects (or attemps to connect) and stay connected to the VersaCloud M2M+IoT solution
selected in the Project Settings based on the flags and options used in the function. Status and Error outputs are pro-
vided for the state of the connection and troubleshooting.

 EZ_MQTT_Connect requires the SNTP feature to be installed in the Project Settings for the ladder program to
 compile successfully and be functional. MQTT uses SNTP to sync the real time clock using UTC time and this
 time is used to validate communication and SSL to VersaCloud M2M+IoT servers.

 When using SNTP, the real time clock cannot be set using the ladder diagram or structured text without
 'breaking' MQTT functionality.

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 665

EZ_MQTT_Publish

Summary:

StringTopic Specific topic string required to connect to VersaCloud M2M+IoT. (STRING)
 For Azure IOT, set to: devices/{DeviceID}/messages/events/ . This automatically
 gets replaced underneath when running with the actual device ID stored in the project
 settings (stored in EEPROM).
 For Exosite Murano, set to $resource/data_in . This automatically gets and updates
 the ID stored in the project settings (stored in EEPROM).
StringPayload Actual data to transmit to VersaCloud M2M+IoT solution. (STRING). This must ve a valid json
 string.
DintPayloadlength Number of bytes to send. (DINT)
DINTsts Status (output) of the transmission (or attempt). (DINT). Error (output), if an error detected.
 (DINT). The status returns one of the following network errors:

 0 No Error
 -1 Out of Memory Error
 -2 Buffer Error
 -3 Timeout Error
 -4 Reverved (Should not see)
 -5 Operation Currently in Progress
 -6 Illegal Value
 -7 Reverved (Should not see)
 -8 Address in Use
 -9 Already Connecting
 -10 Connection Already Established
 -11 Not Connected
 -12 Network Interface Error (Cellular, Ethernet, etc)
 -13 Connection Aborted
 -14 Connection Reset
 -15 Connection Closed
 -16 Illegal Argument

String DintDup Optional. Use only at the recommendation and provided information from Divelbiss. (DINT)
DintQOS Optional. Use only at the recommendation and provided information from Divelbiss. (DINT)
DintRetained Optional. Use only at the recommendation and provided information from Divelbiss. (DINT)

Format:
DINTsts := EZ_MQTT_Publish(StringTopic,StringPayload,DintPayloadlength[,DintDup,DintQOS,DintRetained]);

 Examples: err := EZ_MQTT_Publish('devices/{DeviceID}/messages/events/', payload); or
 err := EZ_MQTT_Publish('devices/{DeviceID}/messages/events/',payload, 0, 0, 0);

The EZ_MQTT_Publish function sends data to a VersaCloud M2M+IoT cloud solution server. This is similar to the lad-
der diagram function block, this function provides sending via structured text.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 666

 EZ_MQTT_Publish requires the SNTP feature to be installed in the Project Settings for the ladder program to
 compile successfully and be functional. MQTT uses SNTP to sync the real time clock using UTC time and this
 time is used to validate communication and SSL to VersaCloud M2M+IoT servers.

 When using SNTP, the real time clock cannot be set using the ladder diagram or structured text without
 'breaking' MQTT functionality.

Example:
FUNCTION_BLOCK FB_MqttPublish1
 VAR_INPUT
 Enable : bool;
 spd : dint;
 load : dint;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR
 VAR
 lastEn: bool;
 payload: string[200];
 err : dint;
 END_VAR

 Q := Enable;

 if Enable AND NOT lastEn then
 EZ_FormatString(payload, '{"engine_load": %d, "engine_speed": %d}', load, spd);
 err := EZ_MQTT_Publish('devices/{DeviceID}/messages/events/', payload);
 end_if;

 lastEn := Enable;

END_FUNCTION_BLOCK

Description:
The EZ_MQTT_Publish sends (or attemps to send) the payload json data to the VersaCloud M2M+IoT solution select-
ed in the Project Settings based on the flags and options used in the function. The DINTsts return value is provided for
the state of the network (and sending).

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 667

EZ_MQTT_RECEIVE

Summary:

StringTopic Actual received MQTT topic (STRING)
StringPayload Actual Payload received fromVersaCloud M2M+IoT solution. (STRING).
DintPayloadlength Number of bytes received in payload. (DINT)
DINTsts Status (output) of the receive (or attempt). (DINT).

 0 No message received
 1 Message received

DintDup Duplication Flag. Indicates message received is a duplicate and was resent because the
 inteded recipient or broker did not acknowledge the original message. (DINT). Usually only
 relevant for QOS grater than 0. Refer to MQTT client library or broker implementation detail.
DintQOS Quality of Service. (DINT). Refer to MQTT client library or broker implementation detail.
DintRetained Retained Flag (DINT). Refer to MQTT client library or broker implementation detail.

Format:
DINTsts :=(StringTopic,StringPayload,DintPayloadlength[,DintDup,DintQOS,DintRetained]);

 Examples: DINTsts := EZ_MQTT_RECEIVE(StringTopic, StringPayload, DintPayloadlength); or
 DINTsts := EZ_MQTT_RECEIVE(StringTopic, StringPayload, DintPayloadlength, DintDup,
 DintQOS, DintRetained);

The EZ_MQTT_RECEIVE function is used to receive data from a VersaCloud M2M+IoT cloud solution server using
MQTT. This is similar to the ladder diagram function block, this function provides receiving via structured text.

Arguments:

 EZ_MQTT_Publish requires the SNTP feature to be installed in the Project Settings for the ladder program to
 compile successfully and be functional. MQTT uses SNTP to sync the real time clock using UTC time and this
 time is used to validate communication and SSL to VersaCloud M2M+IoT servers.

 When using SNTP, the real time clock cannot be set using the ladder diagram or structured text without
 'breaking' MQTT functionality.

Example:
 FUNCTION_BLOCK FB_MqttReceive
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;

 END_VAR

Description:
The EZ_MQTT_RECEIVE received (or attemps to receive) the payload json data from the VersaCloud M2M+IoT solu-
tion (MQTT) selected in the Project Settings based on the flags and options used in the function. The DINTsts return
value is provided for identifying when data is received.

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 668

 VAR
 topic: string[100];
 payload: string[200];
 payloadLen: dint;
 txTopic: string[100];
 txPayload: string[200];
 err : dint;
 result : dint;
 str_command1 : string := '$$home_36274/toggle1';
 str_command2 : string := '$$home_36274/toggle2';
 END_VAR

 var_external

 Overide : dint;
 setpoint : dint;
 end_var

 Q := Enable;

 if Enable then

 (* topic := ''; *)
 err := EZ_MQTT_Receive(topic, payload, payloadLen);

 if err = 1 then
 (* $iothub/methods/POST/Command1/?$rid=2 *)

 if F_strncmp(topic, str_command1, 29) = 0 then
 txTopic := CONCAT('$$iothub/methods/res/204/', RIGHT(topic, len(topic) - 30)); (*EZ_
FormatString(txPayload, '{}');*)
 err := EZ_MQTT_Publish(txTopic, payload);
 EZ_ScanString (payload, '%d', setpoint);

 elsif
 F_strncmp(topic, str_command2, 29) = 0 then
 txTopic := CONCAT('$$iothub/methods/res/204/', RIGHT(topic, len(topic) - 30));
 err := EZ_MQTT_Publish(txTopic, payload);
 EZ_ScanString (payload, '%d', Overide);

 end_if;
 end_if;
 end_if;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 669

EZ_ResetTarget

Summary:

Example:

The EZ_ResetTarget provides a method from the ladder diagram / structured text for being able to restart / reboot the
ladder diagram (with options for forcing the PLC on a Chip to restart also). This can be useful in the event that a reboot
is required for updating programs and kernels; or in the event a reboot may resolve certain undesired operation.

 Regardless of resetType, when the ladder restarts, if the system is configured to update ladder
 diagram and/or kernel from SD card and updated files are on the SD card, the update(s) will
 occur during the restart.

Description:

resetType Optional Boolean flag or variable. When resetType is "0" or not specified, and the function is
 called, the function will force the PLC on a Chip watchdog to trigger a reset. This causes the
 PLC on a Chip to reset and restart the ladder diagram.
 When resetType is specified and not zero, the function sends a restart command for the ladder
 diagram to restart (no watchdog or PLC on a Chip reset).

Format:
EZ_RestartTarget(resetType);

The EZ_ResetTarget is used to force restart force restart the ladder diagram and PLC on a Chip target using a Watch-
dog reset with an optional flag to control the Watchdog PLC on a Chip reset.

Arguments:

FUNCTION_BLOCK FrcRstLadder
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 if(Enable = True) AND (lastEn = False) then
 EZ_ResetTarget(0); (* Force Reset with Watchdog *)

 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 670

EZ_RTC_GETDTLOCAL

Summary:

The EZ_RTC_GETDTLOCAL provides a method from the ladder diagram / structured text to read the hardware's real
time clock and get the local date and time (Unix time) from stored UTC time. The returned time is always returned as
Unix time (number of seconds since 1-1-1970, offset by time zone) and stored in UnixTime. The FileDescriptor is set
for the PLC on a Chip real time clock. The DINT is the status of the function (>=0 for success or negative for error).

The return can be converted to actual individual double integer (DINT) variable for use in the ladder diagram by using
the EZ_TimeDateUnixToCalendar function.

 The EZ_RTC_SETTZOFF function must have been used (on each power up / boot / program start) to set the
 time zone offset (number of minutes difference between your current time zone and UTC time). This value is
 used in the conversion process for the EZ_RTC_GETDTLOCAL function. If the EZ_RTC SETTZOFF is not
 used / set, the returned date/time will not be correct.

 The EZ_RTC_SETTZOFF structured text function and the SETTTZOFF ladder function block function both set
 the time zone offset. If either is ran, then the time zone offset is set until a power cycle occurs (must be ran
 each time the program is started).

 If the EZ_RTC_SETTZOFF function is not called or is set to zero (0), then the EZ_RTC_GETDTLOCAL
 function will return the same value as the EZ_RTC_GETDTUTC function (UTC time with no offset).

Description:

DINT DINT. Function return value. >=0 for success or negative number for error.
FileDescriptor FD_PLCHIP-PXX_RTC for internal PLC on a Chip Real Time Clock.
UnixTime LINT. Variable to hold Unix time (offset by time zone offset).

Format:
DINT := EZ_RTC_GETDTLOCAL(FileDescriptor, UnixTime);

The EZ_RTC_GETDTLOCAL function is used to read the current date and time from the real time clock (when the
real time clock was set using UTC time). This function reads the UTC time, converts the data to local unix time (num-
ber of seconds since 1-1-1970, offset by the time zone) as a long integer. The value can be converted to actual DINT
variables for month, day, etc. using the EZ_TimeDateUnixToCalendar function. For this function to work correctly, the
EZ_RTC_SETTZOFF function must have been ran prior (must be run on each program start) to set the time zone offset
of your current time zone from UTC time (in minutes). This function allows for using the time zone offset to return
the local time (unix time).

Arguments:

Continued Next Page------»

Example:
FUNCTION_BLOCK RDRTC
 VAR_INPUT
 Enable : bool;
 RO: bool; (*run once input flag*)
 TZO: DINT; (*time zone offset*)
 END_VAR
 VAR
 LastRO: bool;
 Sts: DINT;
 LocalDT: LINT;
 END_VAR

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 671

 VAR_OUTPUT
 Q : bool;
 M : DINT;
 D : DINT;
 Y : DINT;
 W : DINT;
 H : DINT;
 MN: DINT;
 SC: DINT;
 END_VAR

 If (RO = true) and (LastRO = False) then (*Set time zone offset once*)
 EZ_RTC_SETTZOFF(TZO);
 LastRO := true;
 End_if;

 If (Enable = True) then

 Sts := EZ_RTC_GETDTLOCAL(FD_PLCHIP_PXX_RTC,LocalDT); (* get unix time*)
 EZ_TimeDateUnixToCalendar(LocalDT,M,D,Y,W,H,MN,SC);

 End_If;

 If (Enable = False) then
 M := 0;
 D := 0;
 Y := 0;
 W := 0;
 H := 0;
 MN := 0;
 SC := 0;

 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 672

EZ_RTC_GETDTUTC

Summary:

The EZ_RTC_GETDTUTC provides a method from the ladder diagram / structured text to read the hardware's real
time clock and get the Unix time from stored UTC time. The returned time is always returned as Unix time (number of
seconds since 1-1-1970) and stored in UnixTime. The FileDescriptor is set for the PLC on a Chip real time clock. The
DINT is the status of the function (>=0 for success or negative for error).

The return can be converted to actual individual double integer (DINT) variable for use in the ladder diagram by using
the EZ_TimeDateUnixToCalendar function.

Description:

DINT DINT. Function return value. >=0 for success or negative number for error.
FileDescriptor FD_PLCHIP-PXX_RTC for internal PLC on a Chip Real Time Clock.
UnixTime LINT. Variable to hold Unix time

Format:
DINT := EZ_RTC_GETDTUTC(FileDescriptor, UnixTime);

The EZ_RTC_GETDTUTC function is used to read the current date and time from the real time clock (when the real
time clock was set using UTC time). This function reads the UTC time, converts the data to unix time (number of sec-
onds since 1-1-1970) as a long integer. This function does NOT allow for using the time zone offset to return the
local time (unix time).

Arguments:

Example:
FUNCTION_BLOCK RDRTC
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 Sts: DINT;
 UXDT: LINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 If (Enable = True) then

 Sts := EZ_RTC_GETDTUTC(FD_PLCHIP_PXX_RTC,UXDT); (* get unix time*)

 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 673

EZ_RTC_SETDTLOCAL

Summary:

The EZ_RTC_SETDTLOCAL provides a method from the ladder diagram / structured text to set the hardware's real
time clock to UTC time using Unix time. The time is always stored as UTC, converted from Unix time (UnixTime (num-
ber of seconds since 1-1-1970)), then offset by time zone. The FileDescriptor is set for the PLC on a Chip real time
clock. The DINT is the status of the function (>=0 for success or negative for error).

 The EZ_RTC_SETTZOFF function must have been used (on each power up / boot / program start) to set the
 time zone offset (number of minutes difference between your current time zone and UTC time). This value is
 used in the conversion process for the EZ_RTC_SETDTLOCAL function. If the EZ_RTC SETTZOFF is not
 used / set, the returned date/time will not be correct.

 The EZ_RTC_SETTZOFF structured text function and the SETTTZOFF ladder function block function both set
 the time zone offset. If either is ran, then the time zone offset is set until a power cycle occurs (must be ran
 each time the program is started).

 If the EZ_RTC_SETTZOFF function is not called or is set to zero (0), then the EZ_RTC_SETDTLOCAL
 function will store the same value as the EZ_RTC_SETDTUTC function (UTC time with no offset).

 The EZ_RTC_SETDTLOCAL requires a 4 digit year as part of the unix time. A two digit year will cause
 incorrect time/date settings.

Description:

DINT DINT. Function return value. >=0 for success or negative number for error.
FileDescriptor FD_PLCHIP-PXX_RTC for internal PLC on a Chip Real Time Clock.
UnixTime LINT. Variable to hold Unix time (offset by time zone offset).

Format:
DINT := EZ_RTC_SETDTLOCAL(FileDescriptor, UnixTime);

The EZ_RTC_SETDTLOCAL function is used to set the current date and time in the real time clock to UTC time (from
unix time, offset by time zone offset). This function sets the UTC time by converting the data from unix time (number of
seconds since 1-1-1970, offset by the time zone) as a long integer into UTC time and storing this time in the real time
clock. The local date and time variables for month, day, etc. can be converted into unix time using the EZ_TimeDate-
CalendarToUnix function. For this function to work correctly, the EZ_RTC_SETTZOFF function must have been ran
prior (must be run on each program start) to set the time zone offset of your current time zone from UTC time (in min-
utes). This function allows for using the time zone offset to set UTC time based on the current time zone offset
(local time/date).

Arguments:

Continued Next Page------»

Example:
FUNCTION_BLOCK SETLOCRTC
 VAR_INPUT
 Enable : bool;
 RO : bool;
 TZ : DINT;
 M : DINT;
 D : DINT;
 Y : DINT;
 H : DINT;
 MN : DINT;

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 674

 SC : DINT;
 END_VAR
 VAR
 Sts: DINT;
 UXDT: LINT;
 LastEN : bool;
 LastRO : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 If (RO = true) and (LastRO = false) then
 EZ_RTC_SETTZOFF(TZ);
 LastRO := true;
 End_If;

 If (Enable = True) and (LastEn = false) then

 EZ_TimeDateCalendarToUnix(UXDT,M,D,Y,H,MN,SC);
 Sts := EZ_RTC_SETDTLOCAL(FD_PLCHIP_PXX_RTC,UXDT); (* get unix time*)

 End_If;

 If (RO = false) then
 LastRO := false;
 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 675

EZ_RTC_SETDTUTC

Summary:

The EZ_RTC_SETDTUTC provides a method from the ladder diagram / structured text to set the hardware's real time
clock and to UTC time (using unix time). The passed in time is always returned as Unix time (number of seconds since
1-1-1970) and stored in UnixTime. The FileDescriptor is set for the PLC on a Chip real time clock. The DINT is the
status of the function (>=0 for success or negative for error).

The UnixTime can be converted from individual double integers (DINTs) variables from the ladder diagram by using the
EZ_TimeDateCalendarToUnix function.

 The EZ_RTC_SETDTLOCAL requires a 4 digit year as part of the unix time. A two digit year will cause
 incorrect time/date settings.

Description:

DINT DINT. Function return value. >=0 for success or negative number for error.
FileDescriptor FD_PLCHIP-PXX_RTC for internal PLC on a Chip Real Time Clock.
UnixTime LINT. Variable to hold Unix time.

Format:
DINT := EZ_RTC_SETDTUTC(FileDescriptor, UnixTime);

The EZ_RTC_SETDTUTC function is used to set the current date and time on the real time clock (using UTC time).
This function uses the provided unix time (number of seconds since 1-1-1970) and converts the data to UTC. This
function does NOT allow for using the time zone offset when storing date / time as UTC (from unix time).

Arguments:

Example:
FUNCTION_BLOCK SETUTCRTC
 VAR_INPUT
 Enable : bool;
 M : DINT;
 D : DINT;
 Y : DINT;
 H : DINT;
 MN : DINT;
 SC : DINT;
 END_VAR
 VAR
 Sts: DINT;
 UXDT: LINT;
 LastEN : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 If (Enable = True)and (LastEN = false) then

 EZ_TimeDateCalendarToUnix(UXDT,M,D,Y,H,MN,SC);
 Sts := EZ_RTC_SETDTUTC(FD_PLCHIP_PXX_RTC,UXDT); (* get unix time*)
 LastEN := true;

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 676

 End_If;

 If (Enable = false) then
 LastEN := false;
 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 677

EZ_RTC_SETTZOFF

Summary:

The EZ_RTC_SETTZOFF sets from structured text the offset in minutes from UTC to the time zone the target is located
in when using the hardware's real time clock with UTC time. This offset allows for functions to use local time/date to set
the real time clock and the real time clock to be read and viewed in local time/date. The passed in Offset is the number
of minutes difference (+ or -) between UTC time and the time zone the hardware target is in.

Description:
Offset DINT. Variable to hold Offset in minutes.

Format:
EZ_RTC_SETTZOFF(Offset);

The EZ_RTC_SETTZOFF function is used to set the current time zone offset (in minutes frrom UTC time) when using
the real time clock (with UTC time). This function set the number of minutes difference between UTC time and the time
zone the target is in.

 The EZ_RTC_SETTZOFF function must have been used (on each power up / boot / program start) to set the
 time zone offset (number of minutes difference between your current time zone and UTC time). This value is
 used in the conversion process for the EZ_RTC_GETDTLOCAL and EZ_RTC_SETDTLOCAL functions. If the
 EZ_RTC SETTZOFF is not used / set, the returned date/time will not be correct.

 The EZ_RTC_SETTZOFF structured text function and the SETTTZOFF ladder function block function both set
 the time zone offset. If either is ran, then the time zone offset is set until a power cycle occurs (must be ran
 each time the program is started).

 If the EZ_RTC_SETTZOFF function is not called or is set to zero (0), then the EZ_RTC_SETDTLOCAL
 function will store the same value as the EZ_RTC_SETDTUTC function (UTC time with no offset).

Arguments:

Example:
FUNCTION_BLOCK SETLOCRTC
 VAR_INPUT
 Enable : bool;
 RO : bool;
 TZ : DINT;
 M : DINT;
 D : DINT;
 Y : DINT;
 H : DINT;
 MN : DINT;
 SC : DINT;
 END_VAR
 VAR
 Sts: DINT;
 UXDT: LINT;
 LastEN : bool;
 LastRO : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 678

 If (RO = true) and (LastRO = false) then
 EZ_RTC_SETTZOFF(TZ);
 LastRO := true;
 End_If;

 If (Enable = True) and (LastEn = false) then

 EZ_TimeDateCalendarToUnix(UXDT,M,D,Y,H,MN,SC);
 Sts := EZ_RTC_SETDTLOCAL(FD_PLCHIP_PXX_RTC,UXDT); (* get unix time*)

 End_If;

 If (RO = false) then
 LastRO := false;
 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 679

EZ_ScanString

Summary:

Format:
DINTvar := EZ_ScanString(StrBuffer, 'VarFormatFlag1 VarformatFlag2 VarformatFlag3..', Var1,Var2, Var3);

The EZ_ScanString is used to parse data from a string (such as a string buffer received during communcation) and
save the data to variables. This function serves to nearly the reverse of the EZ_FormatString function.

Arguments:

StrBuffer Source string variable to parse the variable data from.
DINTvar Function return holding variable (DINT). Number of variables read from the StrBuffer variable.
Varx The variables were the formatted data (using VarFormatFlag) will be stored.The number of
 variables must match the number of FormatString entries and must be in the same order for
 proper functionality. Each Variable is separated by a comma (,).
VarFormatFlag Variable format and Flags are used to identify variable types and formats as well as special
 control characters needed for specific formatting. Follows 'C' scanf standard.
 %flag width .precision Example Text: OIL PSI %-3d
 % - identifies the beginning of a variable or other type of text entry
 flag - Use the following control how data is received.
 Flag Description
 width This flag is optional. Width is the number of characters that will be printed
 (total).
 Some common variable formats and flags are:
 %d - Signed Integer %x - Upper Case Hexadecimal
 %u - Unsigned Integer %o - Octal
 The parsing will begin on whitespace characters (space), commas (,) or tabs. It can also detect
 specific characters in the string.
 For example: nlngth:= EZ_ScanString(stbuff, 'CH1%3d CH2%2d CH3%3d', Var1,Var2, Var3);
 will parse 3 characters after CH1, 2 characters after CH2 and 3 characters after CH3 in the
 stbuff and store them in Var1, Var2 and Var3 respectively.

Continued Next Page------»

Example:

The EZ_FormatString parses (pulls) one to multiple sets of characters from a string, converts and saves the values as
variables based on the VarFormatFlag items used. The variable types and and order must be correct and match the
VarFormatFlag for the function to properly parse and save the data.

Description:

FUNCTION_BLOCK ParseStringtoVars
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 data : string[20];
 lgth : dint;

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 680

 END_VAR
 VAR_OUTPUT
 Q : bool;
 val1 : dint;
 val2 : dint;
 END_VAR

 data := 'CH1345CH2789';

 if(Enable = True) AND (lastEn = False) then

 lgth := EZ_ScanString(data,'CH1%3dCH2%3d', val1, val2);

 end_if;

 Q := Enable;
 lastEn := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 681

EZ_SNTP_START
Summary:

Format:
 EZ_SNTP_START();

The EZ_SNTP_START function is used to begin polling the pre-programmed SNTP (Simple Network Time Protocol)
servers to update / sync the real time clock to UTC time. The SNTP servers are set in the Project Settings.

 The SNTP feature (and SNTP servers) must be installed and configured in the Project Settings before this
 function is available.

 When using SNTP, the real time clock cannot be set using the ladder diagram or structured text without
 'breaking' MQTT functionality.

 SNTP functionality requires a communication interface such as Ethernet or Wi-Fi. These devices / features
 must be supported on the hardware target and installed in the Project Settings prior to installing the SNTP
 feature in the Project Settings.

 SNTP functionality requires the real time clock. The real time clock must be supported on the hardware target
 and installed in the Project Settings prior to installing the SNTP feature in the Project Settings.

Arguments:
There are no Arguments for the EZ_SNTP_START functions

The EZ_SNTP_START function causes the target to start polling the pre-programmed SNTP servers configured in the
Project Settings (SNTP feature). SNTP will poll the server(s) at the rate specified in the Project Settings and update /
sync the real time clock to the SNTP (UTC time).

Refer to Chapter 12 - Real Time Clock for more details on SNTP Project Settings and dialogs.

Description:

Example:
FUNCTION_BLOCK StrtSNTP
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 If (Enable = true) and (LastEN = False) then
 EZ_SNTP_START();
 LastEN := true;
 End_If;

 IF (Enable = False) then
 LastEN := False;
 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 682

EZ_SNTP_STOP
Summary:

Format:
 EZ_SNTP_STOP();

The EZ_SNTP_STOP function is used to end polling the pre-programmed SNTP (Simple Network Time Protocol) serv-
ers and stop updating / syncing the real time clock to UTC time. The SNTP servers are set in the Project Settings.

 The SNTP feature (and SNTP servers) must be installed and configured in the Project Settings before this
 function is available.

 When using SNTP, the real time clock cannot be set using the ladder diagram or structured text without
 'breaking' MQTT functionality.

 SNTP functionality requires a communication interface such as Ethernet or Wi-Fi. These devices / features
 must be supported on the hardware target and installed in the Project Settings prior to installing the SNTP
 feature in the Project Settings.

 SNTP functionality requires the real time clock. The real time clock must be supported on the hardware target
 and installed in the Project Settings prior to installing the SNTP feature in the Project Settings.

Arguments:
There are no Arguments for the EZ_SNTP_STOP functions

The EZ_SNTP_STOP function causes the target to end (stop) polling the pre-programmed SNTP servers configured in
the Project Settings (SNTP feature). SNTP will not update / sync the real time clock to the SNTP (UTC time).

Refer to Chapter 12 - Real Time Clock for more details on SNTP Project Settings and dialogs.

Description:

Example:
FUNCTION_BLOCK StpSNTP
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 LastEn : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 If (Enable = true) and (LastEN = False) then
 EZ_SNTP_START();
 LastEN := true;
 End_If;

 IF (LastEN = true) and (Enable = False) then
 EZ_SNTP_STOP();
 End_If;

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 683

 IF (Enable = False) then
 LastEN := False;
 End_If;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 684

EZ_SpiWriteData

Summary:

The EZ_SpiWriteData is used to control SPI devices (read and write) connected to an SPI port. Refer to the following
timing diagrams for the four modes of operation. The control (read / write) is based entirely on the Flags and Clockrate
as described above. The FileDescriptor must match the SPI port being used. The TxBuffer and RxBuffer are used to
hold transmit and recieve data. The DINTvar returns teh number of bytes transferred or is negative if an error is de-
tected.

Description:

FileDescriptor FD_SPI0 for internal PLC on a Chip SPI Port 0.
 FD_SPI1 for internal PLC on a Chip SPI Port 1.
Flags 16#10000 for active low SPI clock, else uses high SPI Clock
 16#20000 to capture data on first clock transition. CPHA = 0, else CPHA gets set to 1.
 Low 8 bits are data fram size (4-16). Typical size is 8 bits.
Clockrate Clock rate in Khz, maximum 10 Mhz. (UDINT)
GPIO GPIO number for chip select of SPI device (UDINT)
TxBuffer Array for data transmit. (Array of USINT)
RxBuffer Array for data receive. (Array of USINT)
Len Number of frame transfer, sized based on data frame size (UDINT)
DINTvar Function return holding variable (BOOL). Returns the number of bytes transferred or negative
 number if an error occurs.

Format:
DINTvar := EZ_SpiWriteData(FileDescriptor, Flags, Clockrate, GPIO, TxBuffer, RxBuffer, Len);

The EZ_SpiWriteData is used to read / write data to an SPI device on an SPI port. For P-Series targets, the minimum
clock rate is 2KHz.

Arguments:

Continued Next Page------»

Diagrams:

UM10470 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 3 — 12 March 2014 619 of 1111

NXP Semiconductors UM10470
Chapter 21: LPC178x/7x SSP interfaces

21.5.2.1 Clock Polarity (CPOL) and Phase (CPHA) control
When the CPOL clock polarity control bit is 0, it produces a steady state low value on the
SCK pin. If the CPOL clock polarity control bit is 1, a steady state high value is placed on
the CLK pin when data is not being transferred.

The CPHA control bit selects the clock edge that captures data and allows it to change
state. It has the most impact on the first bit transmitted by either allowing or not allowing a
clock transition before the first data capture edge. When the CPHA phase control bit is 0,
data is captured on the first clock edge transition. If the CPHA clock phase control bit is 1,
data is captured on the second clock edge transition.

21.5.2.2 SPI format with CPOL=0,CPHA=0
Single and continuous transmission signal sequences for SPI format with CPOL = 0,
CPHA = 0 are shown in Figure 102.

In this configuration, during idle periods:

• The CLK signal is forced LOW.
• SSEL is forced HIGH.
• The transmit MOSI/MISO pad is in high impedance.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of
transmission is signified by the SSEL master signal being driven LOW. This causes slave
data to be enabled onto the MISO input line of the master. Master’s MOSI is enabled.

a. Single transfer with CPOL=0 and CPHA=0

b. Continuous transfer with CPOL=0 and CPHA=0

Fig 102. SPI frame format with CPOL=0 and CPHA=0 (a) Single and b) Continuous Transfer)

SCK
SSEL

MOSI MSB LSB

QMSB LSB

4 to 16 bits

MISO

SCK
SSEL

MOSI

MISO

4 to 16 bits 4 to 16 bits

MSB LSBMSB LSB

QMSB LSB QMSB LSB

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 685

Example:
FUNCTION_BLOCK DAC8552_108
 VAR_INPUT
 Enable : bool;
 dac1 : dint;
 dac2 : dint;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

Continued Next Page------»

UM10470 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 3 — 12 March 2014 621 of 1111

NXP Semiconductors UM10470
Chapter 21: LPC178x/7x SSP interfaces

For continuous back-to-back transfers, the SSEL pin is held LOW between successive
data words and termination is the same as that of the single word transfer.

21.5.2.4 SPI format with CPOL = 1,CPHA = 0
Single and continuous transmission signal sequences for SPI format with CPOL=1,
CPHA=0 are shown in Figure 104.

In this configuration, during idle periods:

• The CLK signal is forced HIGH.
• SSEL is forced HIGH.
• The transmit MOSI/MISO pad is in high impedance.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of
transmission is signified by the SSEL master signal being driven LOW, which causes
slave data to be immediately transferred onto the MISO line of the master. Master’s MOSI
pin is enabled.

One half period later, valid master data is transferred to the MOSI line. Now that both the
master and slave data have been set, the SCK master clock pin becomes LOW after one
further half SCK period. This means that data is captured on the falling edges and be
propagated on the rising edges of the SCK signal.

In the case of a single word transmission, after all bits of the data word are transferred, the
SSEL line is returned to its idle HIGH state one SCK period after the last bit has been
captured.

a. Single transfer with CPOL=1 and CPHA=0

b. Continuous transfer with CPOL=1 and CPHA=0

Fig 104. SPI frame format with CPOL = 1 and CPHA = 0 (a) Single and b) Continuous Transfer)

SCK

SSEL

QMSB LSB

4 to 16 bits

MISO

MOSI
MSB LSB

SCK

SSEL

MOSI

MISO

4 to 16 bits 4 to 16 bits

MSB LSBMSB LSB

QMSB LSB QMSB LSB

UM10470 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 3 — 12 March 2014 620 of 1111

NXP Semiconductors UM10470
Chapter 21: LPC178x/7x SSP interfaces

One half SCK period later, valid master data is transferred to the MOSI pin. Now that both
the master and slave data have been set, the SCK master clock pin goes HIGH after one
further half SCK period.

The data is now captured on the rising and propagated on the falling edges of the SCK
signal.

In the case of a single word transmission, after all bits of the data word have been
transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last
bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSEL signal must be
pulsed HIGH between each data word transfer. This is because the slave select pin
freezes the data in its serial peripheral register and does not allow it to be altered if the
CPHA bit is logic zero. Therefore the master device must raise the SSEL pin of the slave
device between each data transfer to enable the serial peripheral data write. On
completion of the continuous transfer, the SSEL pin is returned to its idle state one SCK
period after the last bit has been captured.

21.5.2.3 SPI format with CPOL=0,CPHA=1
The transfer signal sequence for SPI format with CPOL = 0, CPHA = 1 is shown in
Figure 103, which covers both single and continuous transfers.

In this configuration, during idle periods:

• The CLK signal is forced LOW.
• SSEL is forced HIGH.
• The transmit MOSI/MISO pad is in high impedance.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of
transmission is signified by the SSEL master signal being driven LOW. Master’s MOSI pin
is enabled. After a further one half SCK period, both master and slave valid data is
enabled onto their respective transmission lines. At the same time, the SCK is enabled
with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SCK
signal.

In the case of a single word transfer, after all bits have been transferred, the SSEL line is
returned to its idle HIGH state one SCK period after the last bit has been captured.

Fig 103. SPI frame format with CPOL=0 and CPHA=1

SCK
SSEL

MOSI

Q

4 to 16 bits

MISO Q MSB

MSB LSB

LSB

Single transfer with CPOL=0 and CPHA=1

UM10470 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 3 — 12 March 2014 622 of 1111

NXP Semiconductors UM10470
Chapter 21: LPC178x/7x SSP interfaces

However, in the case of continuous back-to-back transmissions, the SSEL signal must be
pulsed HIGH between each data word transfer. This is because the slave select pin
freezes the data in its serial peripheral register and does not allow it to be altered if the
CPHA bit is logic zero. Therefore the master device must raise the SSEL pin of the slave
device between each data transfer to enable the serial peripheral data write. On
completion of the continuous transfer, the SSEL pin is returned to its idle state one SCK
period after the last bit has been captured.

21.5.2.5 SPI format with CPOL = 1,CPHA = 1
The transfer signal sequence for SPI format with CPOL = 1, CPHA = 1 is shown in
Figure 105, which covers both single and continuous transfers.

In this configuration, during idle periods:

• The CLK signal is forced HIGH.
• SSEL is forced HIGH.
• The transmit MOSI/MISO pad is in high impedance.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of
transmission is signified by the SSEL master signal being driven LOW. Master’s MOSI is
enabled. After a further one half SCK period, both master and slave data are enabled onto
their respective transmission lines. At the same time, the SCK is enabled with a falling
edge transition. Data is then captured on the rising edges and propagated on the falling
edges of the SCK signal.

After all bits have been transferred, in the case of a single word transmission, the SSEL
line is returned to its idle HIGH state one SCK period after the last bit has been captured.
For continuous back-to-back transmissions, the SSEL pins remains in its active LOW
state, until the final bit of the last word has been captured, and then returns to its idle state
as described above. In general, for continuous back-to-back transfers the SSEL pin is
held LOW between successive data words and termination is the same as that of the
single word transfer.

21.5.3 National Semiconductor Microwire frame format
Figure 106 shows the Microwire frame format for a single frame. Figure 107 shows the
same format when back-to-back frames are transmitted.

Fig 105. SPI Frame Format with CPOL = 1 and CPHA = 1

SCK

SSEL

MOSI

Q

4 to 16 bits

MISO Q MSB

MSB LSB

LSB

Single transfer with CPOL=1 and CPHA=1

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 686

 VAR_TEMP
 txBuf, rxBuf : array [0..2] of byte;
 END_VAR

 Q := False;

 if Enable then

 (* write dac1 value *)
 txBuf[0] := 16#10;

 MSB_INT_TO_ARRAY(txBuf, 1, DINT_TO_INT(dac1));

 EZ_SpiWriteData(
 FD_SPI1, (* Use SPI0 *)
 16#00008, (* SPI clk idle high, CPHA=1, 8 bit transfers *)
 1000, (* 1MHZ Max Clock rate *)
 108, (* Use GPIO108 for Chip Select *)
 txBuf, (* data to transmit to device *)
 rxBuf, (* data to receive data into *)
 3); (* transfer 3 bytes *)

 (* write dac2 value *)
 txBuf[0] := 16#24;

 MSB_INT_TO_ARRAY(txBuf, 1, DINT_TO_INT(dac2));

 EZ_SpiWriteData(
 FD_SPI1, (* Use SPI0 *)
 16#00008, (* SPI clk idle high, CPHA=1, 8 bit transfers *)
 1000, (* 1MHZ Max Clock rate *)
 108, (* Use GPIO108 for Chip Select *)
 txBuf, (* data to transmit to device *)
 rxBuf, (* data to receive data into *)
 3); (* transfer 3 bytes *)

 Q := true;
 end_if;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 687

EZ_TimeDateCalendarToUnix

Summary:

Example:

The EZ_TimeDateCalendarToUnix is used to convert standard date and time to Unix time (number of elapsed seconds
since Jan 1, 1970). The function uses inputs Month, Day, Year, Hour, Min, Sec usually from the real time clock (or other
source such as future time date event input) and converts to Unix time and stores the result in LINTvar.

 When using the EZ_TimeDateCalendarToUnix function to convert to unix time, the date year should be entered
 (passed) as a four-digit year. A four digit year is required for correct conversion.

Description:

LINTvar Variable to hold result of time / date conversion to Unix Time. (LINT).
Month Variable for Month input from real time clock or other source (DINT).
Day Variable for Day input from real time clock or other source (DINT).
Year Variable for Year input from real time clock or other source (DINT).
Hour Variable for Hour input from real time clock or other source (DINT).
Min Variable for Minute input from real time clock or other source (DINT).
Sec Variable for Seconds input from real time clock or other source (DINT).

Format:
EZ_TimeDateCalendarToUnix(LINTvar,Month,Day,Year,Hour,Min,Sec);

The EZ_TimeDateCalendarToUnix converts standard date and time to a Unix time (number of elapsed seconds since
Jan 1, 1970).

Arguments:

FUNCTION_BLOCK DTCONVERT
 VAR_INPUT
 Enable : bool;
 MTH : DINT;
 DY : DINT;
 YR : DINT;
 HR : DINT;
 MINS : DINT;
 SEC : DINT;
 END_VAR
 VAR
 UXTIME : LINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 OMTH : DINT;
 ODY : DINT;
 OYR : DINT;
 OHR : DINT;
 OMINS : DINT;
 OSEC : DINT;
 OWKD : DINT;
 END_VAR

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 688

 IF Enable = True THEN;
 EZ_TimeDateCalendarToUnix(UXTIME,MTH,DY,YR,HR,MINS,SEC); (*Convert to Unix*)
 EZ_TimeDateUnixToCalendar(UXTIME,OMTH,ODY,OYR,OWKD,OHR,OMINS,OSEC); (*Convert to Date
 Time*)
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 689

EZ_TimeDateUnixToCalendar

Summary:

Example:

The EZ_TimeDateUnixToCalendar is used to convert Unix time (number of elapsed seconds since Jan 1, 1970) to cal-
endar based time and date. The function uses outputs Month, Day, Year, Weekday, Hour, Min, Sec from the function.
The LINTvar is used to hold the beginning Unix time value.

Description:

LINTvar Variable to beginning Unix time (to convert to calendar based). (LINT).
Month Function output Variable for Month (DINT).
Day Function output Variable for Day (DINT).
Year Function output Variable for Year 4 Digit year. (DINT).
Weekday Function output Variable for Day of Week (DINT).
Hour Function output Variable for Hour (DINT).
Min Function output Variable for Minute (DINT).
Sec Function output Variable for Seconds (DINT).

Format:
EZ_TimeDateUnixToCalendar(LINTvar,Month,Day,Year,Weekday,Hour,Min,Sec);

The EZ_TimeDateUnixToCalendar converts Unix time (number of elapsed seconds since Jan 1, 1970) to standard date
and time.

Arguments:

FUNCTION_BLOCK DTCONVERT
 VAR_INPUT
 Enable : bool;
 MTH : DINT;
 DY : DINT;
 YR : DINT;
 HR : DINT;
 MINS : DINT;
 SEC : DINT;
 END_VAR
 VAR
 UXTIME : LINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 OMTH : DINT;
 ODY : DINT;
 OYR : DINT;
 OHR : DINT;
 OMINS : DINT;
 OSEC : DINT;
 OWKD : DINT;
 END_VAR

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 690

 IF Enable = True THEN;
 EZ_TimeDateCalendarToUnix(UXTIME,MTH,DY,YR,HR,MINS,SEC); (*Convert to Unix*)
 EZ_TimeDateUnixToCalendar(UXTIME,OMTH,ODY,OYR,OWKD,OHR,OMINS,OSEC); (*Convert to Date
 Time*)
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 691

EZ_UartEnableIsr

Summary:

FUNCTION_BLOCK EnableUART2
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 State : bool;
 FncReturn : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 END_VAR

 IF Enable = 1 THEN;

 FncReturn := EZ_UartEnableIsr(FD_UART2,1); (*Enable UART2*)

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_UartEnableIsr function is used to control on-board PLC on a Chip UART (Serial Ports) state of functionality as
Enabled or Disabled. Disabled UARTs will not receive or transmit any data and the UARTs interrupt is disabled. Struc-
ture Text buffers (ST Buffers) should be enabled and appropriately sized in the EZ LADDER Projects Settings menu
when using structured text UART functions.

Description:

FileDescriptor FD_UART1 for internal PLC on a Chip UART1.
 FD_UART2 for internal PLC on a Chip UART2.
 FD_UART3 for internal PLC on a Chip UART3.
 FD_UART4 for internal PLC on a Chip UART4.
State State to set the UART (0 for disabled, 1 for enabled)
BOOLvar Function return holding variable (BOOL).

Format:
BOOLvar := EZ_UartEnableIsr(FileDescriptor, State);

The EZ_UartEnableIsr function is used enable or disable UARTs.

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 692

EZ_UartGetBytesToRead

Summary:

FUNCTION_BLOCK GetbytesUART3
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 FncReturn : DINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 ByteAvail: DINT;
 END_VAR

 IF Enable = 1 THEN;

 FncReturn := EZ_UartGetBytestoRead(FD_UART3); (*Get Bytes from UART3*)
 ByteAvail := FncReturn; (*Store value in function output var*)

 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Example:

The EZ_UartGetBytestoRead function accesses the UART's receive buffer and returns the number of bytes that are in
the receive buffer as DINTvar (# of bytes available to read). Structure Text buffers (ST Buffers) should be enabled and
appropriately sized in the EZ LADDER Projects Settings menu when using structured text UART functions.

Description:

FileDescriptor FD_UART1 for internal PLC on a Chip UART1.
 FD_UART2 for internal PLC on a Chip UART2.
 FD_UART3 for internal PLC on a Chip UART3.
 FD_UART4 for internal PLC on a Chip UART4.
DINTvar Function return holding variable (DINT). # of Bytes available to read in the UART's receive
 buffer.

Format:
DINTvar := EZ_UartGetBytestoRead(FileDescriptor);

The EZ_UartGetBytestoRead function access the UART and return the number of bytes available to read from the
UART's receive buffer.

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 693

EZ_UartIsTxFinished

Summary:Summary:

FUNCTION_BLOCK UART3WrtChk
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 FncReturn1 : bOOl;
 LastEnable : bool;
 FncReturn2 : DINT;
 Data : string[80];
 END_VAR
 VAR_OUTPUT
 Q : bool;
 Done : bool;
 END_VAR
 (* Set Data String to send*)
 Data := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789^&#!ABCDEFGHIJKLMNOPQRSTUVWX
YZ0123456789^&#!';

 IF Enable = 1 AND LastEnable = 0 THEN; (*look for rising edge to transmit ie run once*)
 FncReturn2 := EZ_UartWriteStr(FD_UART3,Data); (* Send data to tx buffer*)
 END_IF;

 IF Enable = 1 THEN; (*Look for Enable to keep checking if done*)
 FncReturn1 := EZ_UartIsTxFinished(FD_UART3); (*Check if finished*)
 Done := FncReturn1; (*Set FncReturn to output variable to view in ladder*)
 END_IF;

 Q := Enable;
 LastEnable := Enable; (*set flag for rising edge run once*)

END_FUNCTION_BLOCK

Example:

The EZ_UartIsTxFinished function accesses the UART and determines if the current transmit cycle has completed or
not and returns the BOOLvar as True if complete or False if not complete. If using this function with a UART configured
for RS85, this function will turn off the RS485 transmitter after all the characters have been transmitted.

Description:

FileDescriptor FD_UART1 for internal PLC on a Chip UART1.
 FD_UART2 for internal PLC on a Chip UART2.
 FD_UART3 for internal PLC on a Chip UART3.
 FD_UART4 for internal PLC on a Chip UART4.
BOOLvar Function return holding variable (BOOL). False / 0 when transmit has not completed; True or 1
 when transmit has completed.

Format:
BOOLvar := EZ_UartIsTxFinished(FileDescriptor);

The EZ_UartIsTxFinished function access the UART and determines if the UART transmit has completed or has not
completed.

Arguments:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 694

EZ_UartRead

Summary:

FUNCTION_BLOCK UART3RdBytes
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 FncReturn1 : DINT;
 FncReturn2 : DINT;
 DATA : ARRAY[0..4] of USINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 NByte : DINT;
 RByte1 : DINT;
 RByte2 : DINT;
 RByte3 : DINT;
 RByte4 : DINT;
 END_VAR

 IF Enable = 1 THEN; (*Look for Enable to keep checking if done*)
 FncReturn1 := EZ_UartGetBytestoRead(FD_UART3); (*Check if for # bytes*)
 NByte := FncReturn1;
 IF FncReturn1 >= 4 THEN; (*Check for 4 bytes*)

Example:

The EZ_UartRead function accesses the UART and reads the Len number of bytes from the UART's receive buffer
then stores the read bytes into the byte array variable RXBuffer beginning in the byte array variable RXBuffer at the
Offset location. If there are less available bytes in the UART's receive buffer than specified in the Len, then just the
number available is actually read and stored in RXbuffer. The DINTvar return variable stores the actual number of
bytes read and stored in RXbuffer. The EZ_UartGetBytestoRead may be used to identify the number of bytes available
and to trigger an actual read using this function. Structure Text buffers (ST Buffers) should be enabled and appropri-
ately sized in the EZ LADDER Projects Settings menu when using structured text UART functions.

Description:

FileDescriptor FD_UART1 for internal PLC on a Chip UART1.
 FD_UART2 for internal PLC on a Chip UART2.
 FD_UART3 for internal PLC on a Chip UART3.
 FD_UART4 for internal PLC on a Chip UART4.
RxBuffer Byte array buffer variable to store received data (ARRAY [] of USINT)
Offset Zero based offset value into RxBuffer to begin storing received data (DINT).
Len Number of bytes to read and store into TxBuffer (DINT).
DINTvar Function return holding variable (DINT). Returns the number of bytes read.

Format:
DINTvar := EZ_UartRead(FileDescriptor,RxBuffer, Offset, Len);

The EZ_UartRead function access the UART and reads data from the UARTs receive buffer into a byte array of USINT.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 695

 FncReturn2 := EZ_UartRead(FD_UART3,DATA,0,4); (*Read 4 bytes*)
 RByte1 := DATA[0]; (*Store in output to view*)
 RByte2 := DATA[1];
 RByte3 := DATA[2];
 RByte4 := DATA[3];
 END_IF;
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 696

EZ_UartSetBaudRate

Summary:

FUNCTION_BLOCK UARTCtrlBaud
 VAR_INPUT
 Enable : bool;
 BR19200 : bool;
 END_VAR
 VAR
 FncReturn1 : DINT;
 FncReturn2 : DINT;
 FncReturn3 : DINT;
 DATA : ARRAY[0..1] of USINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RByte1 : DINT;
 RByte2 : DINT;
 END_VAR

 IF Enable = 1 THEN; (*Look for Enable to keep checking if done*)
 IF BR19200 = 1 THEN; (*Change baud rate input set*)
 FncReturn3 := EZ_UartSetBaudRate(FD_UART3,19200); (*Set to 19200*)
 ELSE
 FncReturn3 := EZ_UartSetBaudRate(FD_UART3,9600); (*Set to 9600*)
 END_IF;

 FncReturn1 := EZ_UartGetBytestoRead(FD_UART3); (*Check if for # bytes*)
 IF FncReturn1 >= 2 THEN; (*Check for 2 bytes*)

Example:

The EZ_SetBaudRate function accesses the UART and sets the UART's baud rate for communications. The BaudRate
is used to configure the baud rate in typical bits per second (ie: 9600, 19200, 57600, etc). The DINTvar returns a 0
when the baud rate has been successfully set. Structure Text buffers (ST Buffers) should be enabled and appropriately
sized in the EZ LADDER Projects Settings menu when using structured text UART functions.

Description:

FileDescriptor FD_UART1 for internal PLC on a Chip UART1.
 FD_UART2 for internal PLC on a Chip UART2.
 FD_UART3 for internal PLC on a Chip UART3.
 FD_UART4 for internal PLC on a Chip UART4.
BaudRate Baud Rate for UART (ie: 19200, 9600) (UDINT). Supports baud rates 4800, 9600, 19200,
 57600 and 115200.
DINTvar Function return holding variable (DINT). Returns the number of bytes read.

Format:
DINTvar := EZ_SetBaudRate(FileDescriptor,BaudRate);

The EZ_SetBaudRate function access the UART sets / changes the Baud Rate of the UART.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 697

 FncReturn2 := EZ_UartRead(FD_UART3,DATA,0,2); (*Read 2 bytes*)
 RByte1 := DATA[0]; (*Store in output to view*)
 RByte2 := DATA[1];
 END_IF;
 END_IF;

 Q := Enable;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 698

EZ_UartWrite

Summary:

FUNCTION_BLOCK UART3WrtByteChk
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 FncReturn1 : bOOl;
 LastEnable : bool;
 FncReturn2 : DINT;
 DATA : ARRAY[0..15] of USINT;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 Done : bool;
 END_VAR

 (* Set values of data in byte array to send*)
 DATA[0] := 48; DATA[1] := 49; DATA[2] := 50; DATA[3] := 51; DATA[4] := 52; DATA[5] := 53; DATA[6] := 54;
 DATA[7] := 55; DATA[8] := 56; DATA[9] := 57; DATA[10] := 65; DATA[11] := 66; DATA[12] := 67; DATA[13] := 68;
 DATA[14] := 69; DATA[15] := 70;

 IF Enable = 1 AND LastEnable = 0 THEN; (*look for rising edge to transmit ie run once*)
 FncReturn2 := EZ_UartWrite(FD_UART3,DATA,0,16); (* Send data to tx buffer*)
 END_IF;

Example:

The EZ_UartWrite function accesses the UART and loads the data in the byte array TxBuffer into the UART's transmit
buffer beginning with the Offset byte and continuing for the Len number of bytes.This will copy the data into the buffer
and begin transmitting. This function will return before all the data has been transmitted, so the EZ_UartIsTxFinished
function should be used to identify the completion of the transmit. The DINTvar return variable returns the number of
bytes written to the transmit buffer or a 0 if the UART is busy. Structure Text buffers (ST Buffers) should be enabled and
appropriately sized in the EZ LADDER Projects Settings menu when using structured text UART functions.

Description:

FileDescriptor FD_UART1 for internal PLC on a Chip UART1.
 FD_UART2 for internal PLC on a Chip UART2.
 FD_UART3 for internal PLC on a Chip UART3.
 FD_UART4 for internal PLC on a Chip UART4.
TxBuffer Byte array buffer variable to transmit data from (ARRAY [] of USINT).
Offset Zero based offset value into TxBuffer to begin reading transmit data (DINT).
Len Number of bytes of Byte array buffer TxBuffer to write beginning at Offset (DINT).
DINTvar Function return holding variable (DINT). Returns the number of bytes written or 0 if the UART
 is busy.

Format:
DINTvar := EZ_UartWrite(FileDescriptor,TxBuffer, Offset, Len);

The EZ_UartWrite function access the UART and loads data into the UARTs transmit buffer from a byte array source.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 699

 IF Enable = 1 THEN; *Look for Enable to keep checking if done*)
 FncReturn1 := EZ_UartIsTxFinished(FD_UART3); (*Check if finished*)
 Done := FncReturn1; (*Set FncReturn to output variable to view in ladder*)
 END_IF;

 Q := Enable;
 LastEnable := Enable; (*set flag for rising edge run once*)

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 700

EZ_UartWriteStr

Summary:

FUNCTION_BLOCK UART3WrtChk
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR
 FncReturn1 : bOOl;
 LastEnable : bool;
 FncReturn2 : DINT;
 Data : string[80];
 END_VAR
 VAR_OUTPUT
 Q : bool;
 Done : bool;
 END_VAR
 (* Set Data String to send*)
 Data := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789^&#!ABCDEFGHIJKLMNOPQRSTUVWX
YZ0123456789^&#!';

 IF Enable = 1 AND LastEnable = 0 THEN; (*look for rising edge to transmit ie run once*)
 FncReturn2 := EZ_UartWriteStr(FD_UART3,Data); (* Send data to tx buffer*)
 END_IF;

 IF Enable = 1 THEN; (*Look for Enable to keep checking if done*)
 FncReturn1 := EZ_UartIsTxFinished(FD_UART3); (*Check if finished*)
 Done := FncReturn1; (*Set FncReturn to output variable to view in ladder*)
 END_IF;

Example:

The EZ_UartWriteStr function accesses the UART and loads the data in StrBuffer into the UART's transmit buffer.This
will copy the entire string into the buffer and begin transmitting. This function will return before all the data has been
transmitted, so the EZ_UartIsTxFinished function should be used to identify the completion of the transmit. The DINT-
var return variable returns the number of bytes written to the transmit buffer or a 0 if the UART is busy. Structure Text
buffers (ST Buffers) should be enabled and appropriately sized in the EZ LADDER Projects Settings menu when using
structured text UART functions.

Description:

FileDescriptor FD_UART1 for internal PLC on a Chip UART1.
 FD_UART2 for internal PLC on a Chip UART2.
 FD_UART3 for internal PLC on a Chip UART3.
 FD_UART4 for internal PLC on a Chip UART4.
StrBuffer Holding Varialble with String data. (STRING)
DINTvar Function return holding variable (DINT). Returns the number of bytes written or 0 if the UART
 is busy.

Format:
DINTvar := EZ_UartWriteStr(FileDescriptor,StrBuffer);

The EZ_UartWriteStr function accesses the UART and loads data into the UARTs transmit buffer from a string source.

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 701

 Q := Enable;
 LastEnable := Enable; (*set flag for rising edge run once*)

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 702

EZ_WiFi_Get_Access_Points

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.

AccessPts Variable to hold detected access point data (STRING). An access point's data is returned as a
 single string and this string will need parsed.

Format:
Statvar := EZ_WiFi_Get_Access_Points(Error,AccessPts);

The EZ_WiFi_Get_Access_Points function is used scan and return all the AP (access points / wi-fi networks) in range
of the Wi-Fi module. This function returns a string of data for each access point detected.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 703

The EZ_WiFi_Get_Access_Points function commands the on-board Wi-Fi module to scan for all available wi-fi net-
works (Access points / APs) within range and return information about the access point as AccessPts (STRING). For
proper operation, this function must be repeatedly called until the Statvar = 2 signifying it has completed. When Statvar
= 1, it signifies that some access point data is available (but the function hasn't completed scanning and finished). As
the function is repeatedly 'polled', all networks are located before the Statvar = 2.

When Statvar = 2 (complete), the Error value must be checked for addtional errors (see previous page Error values).

The AccessPts data is received as a single string and must be parsed as needed for information (application specific).
This function :

 Returns a list of up to 16 APs and Ad-Hoc networks available in the surrounding area. Each line contains the
 following comma-separated fields:
 <SSID>,<AP Type>,<BSSID>,<security type>,<channel>,<RSSI>

 <AP Type> = ADHOC|AP
 <Security type> = NONE|WEP64|WEP128|WPA|WPA2
 <RSSI> = Value between 0-255 which represents (SNR+NoiseFloor). Higher RSSI values indicate weaker
 signal strength.

 For example:
 Jetta,AP,06:14:6C:69:4A:7C,WPA,1,25
 RTL8186-default,AP,00:E0:4C:81:86:86,NONE,1,77
 dlink_test,AP,00:1C:F0:9A:63:7A,NONE,1,68

Description:

FUNCTION_BLOCK WifiGetAccessPoints
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 response: DINT;
 complete: bool := FALSE;
 err : INT := 0;
 getStr : STRING[60];
 descriptionString : STRING[50];
 buff : STRING[10];
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Get_Access_Points(err, getStr);
 RES := INT_TO_DINT(result); (*set functionblock RES to result*)
 ER := INT_TO_DINT(err); (*set functionblock ER to err*)

 IF (result = 1 or result = 2) THEN

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 704

 (*Write result to serial port. Don't print NULL Strings*)
 IF (getStr[0] <> 0) THEN

 EZ_FormatString(buff, '$N');
 EZ_FormatString(descriptionString, '$NReading Access Points: $N');
 while EZ_UartWriteStr(FD_UART3, descriptionString) <= 0 do
 ;
 end_while;

 (*Print Result*)
 while EZ_UartWriteStr(FD_UART3, getStr) <= 0 do
 ;
 end_while;
 (*Print Carriage Return and Line Feed*)
 while EZ_UartWriteStr(FD_UART3, buff) <= 0 do
 ;
 end_while;
 END_IF;
 END_IF;

 IF (result = 2) THEN
 complete := TRUE;
 END_IF;

 IF (result < 0) THEN
 EZ_FormatString(getStr, 'Read AP List Error Res: %d Er: %d $N', result, err);
 (*Print Error Information*)
 while EZ_UartWriteStr(FD_UART3, getStr) <= 0 do
 ;
 end_while;
 complete := TRUE;
 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 705

EZ_WiFi_GetChannel

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Channel The Channel number for Wi-Fi communications read from the Wi-Fi module (INT). Channels
 will range from 0 to 12.

Format:
Statvar := EZ_WiFi_Get_Channel(Error, Channel);

The EZ_WiFi_Get_Channel function reads the channel (used to connect to a wi-fi network) from the on-board Wi-Fi
module. Only one channel is stored.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

The EZ_WiFi_Get_Channel reads the Channel used for communicating to the Wi-Fi network from the Wi-Fi module.
The Statvar variable returns the status of the function per the list above. When Statvar = 2 (complete), the Error value
must be checked for addtional errors (listed above as Error values).

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 706

FUNCTION_BLOCK WifiGetChannel
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 WC : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 channel : INT;
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Get_Channel(err, channel); (*read channel# from Wi-Fi module*)
 RES := INT_TO_DINT(result);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN
 WC := INT_TO_DINT(channel); (*Copy to functionblock output pin to see in ladder*)
 (*Format for writing to uart*)
 EZ_FormatString(buffer, 'Read Channel Complete. Channel: %d $N', WC);

 ELSE

 EZ_FormatString(buffer, 'Write Channel Error - Res: %d Er: %d $N', result, err);

 END_IF;

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*write to uart*)
 ;
 end_while;
 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 707

EZ_WiFi_Get_Connection_Status_1

Summary:Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
PortStat Variable to hold the current Wi-Fi port status (INT). Returns as follows:
 PortStat Values

 0 Wireless LAN adapter not present
 1 Wireless LAN adapter disabled
 2 Searching for initial connection
 4 Connected
 5 Out of Range
XferRate Variable to hold the current Wi-Fi data transfer rate (INT). Transfer rate values can range from

Format:
Statvar := EZ_WiFi_Get_Connection_Status_1(Error,PortStat,XferRate,Siglevel, LinkQual);

The EZ_WiFi_Get_Connection_Status_1 function is used retrieve the current Wi-Fi connection status information in-
cluding port status, transfer rate, signal level and link quality.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 708

 1 to 54 mbps.
Siglevel Variable to hold the current Wi-Fi signal level (INT). Signal level is reported as a % with range
 of 0 to 100 (%).
LinkQual Variable to hold the current Wi-Fi Link Quality (INT). Link quality is reported as a % with range
 of 0 to 100 (%).

Description:
The EZ_WiFi_Get_Connection_Status_1 returns connection status regarding the on-board Wi-Fi module's current con-
nection. For proper operation, this function must be repeatedly called until the Statvar = 2 signifying it has completed.

When Statvar = 2 (complete), the Error value must be checked for addtional errors (see previous page Error values).

The PortStat (INT) variable returns the current port status (0,1,2,4 or 5) per the list on the previous page. The XferRate
(INT) variable returns the current transfer rate. The Siglevel (INT) variable holds the current signal level as a percent
(0-100).The LinkQual glevel (INT) variable holds the current link quality (connection quality) as a percent (0-100).

FUNCTION_BLOCK WifiGetConnectionStatus1
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 buffer : STRING[100];

 err : INT := 0;
 _ps : INT := 0;
 _xr : INT := 0;
 _sl : INT := 0;
 _lq : INT := 0;

 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Get_Connection_Status_1(err, _ps, _xr, _sl, _lq);
 RES := INT_TO_DINT(result); (*Copy to functionblock output*)
 ER := INT_TO_DINT(err); (*Copy to functionblock output*)

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN
 (*Successful read from Wifi module*)
 EZ_FormatString(buffer,'Read Connection Status 1 Complete. %d,%d,%d,%d $N',_ps,_xr,_sl,_lq);

 ELSE
 (*Error while reading from Wifi module*)

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 709

 EZ_FormatString(buffer,'Read Connection Status 1 Error Res: %d Er: %d $N', result, err);

 END_IF;

 (*Write result to serial port*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do
 ;
 end_while;

 complete := TRUE;
 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 710

EZ_WiFi_Get_Connection_Status_2

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Status Variable to hold the current Wi-Fi port status (STRING). The status is return as one string that
 will require parsing to get data based on application requirements.

Format:
Statvar := EZ_WiFi_Get_Connection_Status_2(Error,Status);

The EZ_WiFi_Get_Connection_Status_2 function is used retrieve a report of the current WLAN connection (see info in
Arguments and Description below).

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Description:
The EZ_WiFi_Get_Connection_Status_2 returns connection information regarding the on-board Wi-Fi modules cur-
rent connection to a network (WLAN). For proper operation, this function must be repeatedly called until the Statvar = 2
signifying it has completed.

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 711

When Statvar = 2 (complete), the Error value must be checked for addtional errors (see previous page Error values).

The Status (STRING) variable returns the current connection information (see information below) as a single string.
This string will require parsing to retrieve data based on actual applications needs.

 Returns a report of the current WLAN connection.
 <SSID>,<BSSID>,<security type>,<WPA status>,<channel>,<SNR>

 <Security type> = NONE|WEP64|WEP128|WPA|WPA2
 <WPA status> = Completed|Not Completed
 This indicates whether WPA negotiation completed or not, appears only when WPA/WPA2 security is
 specified.

 Return Status example:
 Jetta,06:14:6C:69:4A:7C,WPA,Completed,1,68

FUNCTION_BLOCK WifiGetConnectionStatus2
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool;
 err : INT := 0;
 returnString : STRING[50];
 descriptionString : STRING[50];
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Get_Connection_Status_2(err, returnString);
 RES := INT_TO_DINT(result); (*Copy to functionblock output*)
 ER := INT_TO_DINT(err); (*Copy to functionblock output*)

 IF (result <> 0) THEN

 EZ_FormatString(descriptionString, 'Reading Connection Status 2: ');
 while EZ_UartWriteStr(FD_UART3, descriptionString) <= 0 do
 ;
 end_while;

 IF (result <> 2 or err <> 0) THEN
 (*Error while reading from Wifi module*)
 EZ_FormatString(returnString, 'Read Connection Status 1 Error. Res: %d Er: %d $N', result, err);

 END_IF;

 IF (returnString[0] = 0) THEN

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 712

 EZ_FormatString(returnString, 'No connection. Null string returned.');
 END_IF;

 (*Write result to serial port*)
 while EZ_UartWriteStr(FD_UART3, returnString) <= 0 do
 ;
 end_while;

 complete := TRUE;

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 713

EZ_WiFi_Get_Mode
Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.

Mode Function return holding variable (INT). Returns the current Wi-Fi mode of operation (0 for
 Client or 1 for Host). This must be converted to a DINT before it can exported from structured
 text to the ladder diagram.See Chapter 30 - Ethernet / Wi-Fi for more information modes of
 operation (Client and Host mode).

Format:
Statvar := EZ_WiFi_Get_Mode(Error, Mode);

The EZ_WiFi_Get_Mode function is used read the current Wi-Fi mode of operation (Client or Host). See Chapter 30 -
Ethernet / Wi-Fi for more information modes of operation (Client and Host mode).

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Description:
The EZ_WiFi_Get_Mode reads and returns the operational mode of the on-board Wi-Fi to either Client (0) or Host (1).
The Statvar variable returns the status of the function per the list above. When Statvar = 2 (complete), the Error value
must be checked for addtional errors (listed above as Error values). Refer to Chapter 30 - Ethernet / Wi-Fi for more
information regarding Wi-Fi modes of operation.

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 714

FUNCTION_BLOCK WifiRDMode
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 MD : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 cmode : INT;
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Get_Mode(err,cmode); (*Read Mode*)
 RES := INT_TO_DINT(result);
 MD := INT_TO_DINT(cmode);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN (*Format for writing to uart*)
 EZ_FormatString(buffer, 'Set Read Completed :%d',MD);

 ELSE

 EZ_FormatString(buffer, 'Read Mode Error - Res: %d Er: %d $N', result, err);

 END_IF;

 (*Print result*)
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do (*write to uart*)
 ;
 end_while;
 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 715

EZ_WiFi_Get_Passcode

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Index Index number to read the Passcode from (INT)(referred to as slot in Chapter 19). Valid Index is
 0-9. The passcode for an SSID must be read from the same Index as the SSID itself (ie: the
 passcode Index should equal the SSID Index for proper operation).
Passcode Variable to hold the Passcode read from the Wi-Fi module (STRING). This passcode is
 used to authenticate the to the network for the SSID stored at Index location. The Passcode

Format:
Statvar := EZ_WiFi_Get_Passcode(Error, Index, Passcode);

The EZ_WiFi_Get_Passcode function is used read an SSID's passcode (to connect to a wi-fi network) from the on-
board Wi-Fi module SSID (network) connections list. A total of 10 passcodes (one for each SSID) may be stored. These
SSIDs storage locations are the same as described in Chapter 30. See Chapter 30 - Ethernet / Wi-Fi for more infor-
mation regarding SSID storage. The passcode location # should match the SSID location # of the desired SSID con-
nections. The passcode is not viewable and is always returned as astericks (*). This function may be used to identify if
a passcode has been set or the number of charactes in the passcode only.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 716

 string variable declaration should be large enough to handle the Passcode. If the Passcode
 is larger than the declared variable, it will be truncated.The passcode is not viewable and is
 always returned as astericks (*).

The EZ_WiFi_Get_Passcode reads the Passcode from the Wi-Fi module's memory at the Index location (0-9). The
passcode stored at the Index location should be the passcode to connect to the SSID of the same Index location. For
example, the SSID stored at index location (slot) 5 would use the passcode stored at index location 5. The Statvar vari-
able returns the status of the function per the list above. When Statvar = 2 (complete), the Error value must be checked
for addtional errors (listed above as Error values). Refer to Chapter 30 - Ethernet / Wi-Fi for more information regard-
ing SSID storage.

The passcode is not viewable and is always returned as astericks (*). This function may be used to identify is a pass-
code has been set or the number of charactes in the passcode only.

Description:

FUNCTION_BLOCK WifiGetPasscode
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 buffer2 : STRING[40];
 index : INT := 3;
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Get_Passcode(err, index, buffer2); (*read passcode to index location 3*)
 RES := INT_TO_DINT(result);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN (*Format for writing to uart*)
 EZ_FormatString(buffer, 'Read Passcode Complete %d : Passcode : ', index);

 (*Print partial result*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*write to uart*)
 ;
 end_while;

 (*Print Passcode to uart*)
 while EZ_UartWriteStr(FD_UART3, buffer2) <= 0 do (*write to uart*)
 ;
 end_while;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 717

 (*Print CRLF to uart*)
 while EZ_UartWriteStr(FD_UART3, '$N') <= 0 do (*write to uart*)
 ;
 end_while;

 ELSE
 EZ_FormatString(buffer, 'Write Passcode Error %d Res: %d Er: %d $N', index, result, err);

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*write to uart*)
 ;
 end_while;
 END_IF;

 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 718

EZ_WiFi_Get_Security

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Index Index number to read the Security Type from (INT)(referred to as slot in Chapter 19). Valid
 Index is 0-9. The Security Type for an SSID to function properly must be read from the same
 Index as the SSID itself (ie: the SSID Index and passcode Index should equal the Security
 Type Index for proper operation).
Type Variable to hold the Security Type to be read from the Wi-Fi module (INT). This Security Type

Format:
Statvar := EZ_WiFi_Get_Security(Error, Index, Type);

The EZ_WiFi_Get_Security function is read an SSID's security setting (needed to connect to a wi-fi network) from the
on-board Wi-Fi module SSID (network) connections list. A total of 10 security settings (one for each SSID) may be
stored. These SSIDs storage locations are the same as described in Chapter 30. See Chapter 30 - Ethernet / Wi-Fi
for more information regarding SSID storage. The security setting location # should match the SSID location # and
passcode location # for the SSID.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 719

 is used to authenticate the to the network for the SSID stored at Index location. Supported
 values are:
 Value Security Type
 0 No Security
 3 WPA
 4 WPA2

The EZ_WiFi_Get_Security reads the security Type value for the SSID from the Wi-Fi module's memory at the Index
location (0-9). The security Type stored at the Index location is the security Type of the SSID (required to connect to
the SSID) of the same Index location. For example, the SSID stored at index location (slot) 5 would use the passcode
stored at index location 5 and the security Type stored at index location 5. The supported Types are listed above. The
Statvar variable returns the status of the function per the list above. When Statvar = 2 (complete), the Error value must
be checked for addtional errors (listed above as Error values). Refer to Chapter 30 - Ethernet / Wi-Fi for more informa-
tion regarding SSID storage.

Description:

FUNCTION_BLOCK WifiGetSecurity
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 ST : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 SEC : INT;
 index : INT := 3;
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Get_Security(err, index, SEC); (*Read security type from index location 3*)
 RES := INT_TO_DINT(result);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN
 ST := INT_TO_DINT(SEC);
 (*Format for writing to uart*)
 EZ_FormatString(buffer, 'Read Security Complete %d $N', SEC);

 ELSE

 EZ_FormatString(buffer, 'Write Security Error %d Res: %d Er: %d $N', index, result, err);

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 720

 END_IF;

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*write to uart*)
 ;
 end_while;
 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 721

EZ_WiFi_Get_SSID

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Index Index number to read the SSID from (INT)(referred to as slot in Chapter 19). Valid Index is
 0-9.
SSID Variable to hold SSID that is read from the Wi-Fi module (STRING). The SSID string variable
 declaration should be large enough to handle the SSID. If the SSID is larger than the declared
 variable, it will be truncated.

Format:
Statvar := EZ_WiFi_Get_SSID(Error, Index, SSID);

The EZ_WiFi_Get_SSID function is used read an SSID from the on-board Wi-Fi module SSID (network) connections
list. A total of 10 SSIDs may be stored. These SSIDs storage locations are the same as described in Chapter 30. See
Chapter 30 - Ethernet / Wi-Fi for more information regarding SSID storage.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 722

The EZ_WiFi_Get_SSID reads an SSID value from the Wi-Fi module's memory at the Index location (0-9).The Statvar
variable returns the status of the function per the list on the previous page. When Statvar = 2 (complete), the Error
value must be checked for addtional errors (listed above as Error values). Refer to Chapter 30 - Ethernet / Wi-Fi for
more information regarding SSID storage.

Description:

FUNCTION_BLOCK WifiGetSSID
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool;
 err : INT;
 buffer : STRING[25];
 buffer2 : STRING[80];
 index : INT;
 END_VAR

 index := 3; (*Set index / slot to 3*)

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Get_SSID(err, index, buffer); (*keep calling / checking function until complete*)
 RES := INT_TO_DINT(result);
 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN
 (*No Error, format print data description for uart*)
 EZ_FormatString(buffer2, 'Read SSID Complete. SSID: ');

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer2) <= 0 do (*Print data to uart*)
 ;
 end_while;

 (*No Error, copy SSID for print to uart*)
 buffer2 := buffer;
 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer2) <= 0 do (*Print data to uart*)
 ;
 end_while;

 (*Print CRLF to uart*)
 while EZ_UartWriteStr(FD_UART3, '$N') <= 0 do (*Print data to uart*)
 ;
 end_while;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 723

 ELSE
 (*Error, format print data for uart*)
 EZ_FormatString(buffer2, 'Read SSID Error %d Res: %d Er: %d $N', index, result, err);

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer2) <= 0 do (*Print data to uart*)
 ;
 end_while;
 END_IF;

 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 724

EZ_WiFi_Set_Channel
Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Channel The Channel number for Wi-Fi communications to store on the Wi-Fi module (INT). Supports
 channels 0-12.

Format:
Statvar := EZ_WiFi_Set_Channel(Error, Channel);

The EZ_WiFi_Set_Channel function is used write and store the channel (used to connect to a wi-fi network) to the on-
board Wi-Fi module module. Only one channel may be stored.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

The EZ_WiFi_Set_Channel writes / stores the Channel used for communicating to the Wi-Fi network to the Wi-Fi mod-
ule. The Statvar variable returns the status of the function per the list above. When Statvar = 2 (complete), the Error
value must be checked for addtional errors (listed above as Error values).

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 725

FUNCTION_BLOCK WifiSetChannel
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Set_Channel(err, 6); (*Store channel #6 to Wi-Fi module*)
 RES := INT_TO_DINT(result);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN (*Format for writing to uart*)
 EZ_FormatString(buffer, 'Write Channel Complete');

 ELSE

 EZ_FormatString(buffer, 'Write Channel Error - Res: %d Er: %d $N', result, err);

 END_IF;

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*write to uart*)
 ;
 end_while;
 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 726

EZ_WiFi_Set_Mode
Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.

Mode Either a variable or hard-coded. When 0, sets the Wi-Fi mode to Client and when 1, sets the
 Wi-Fi mode to Host. See Chapter 30 - Ethernet / Wi-Fi for more information modes of
 operation (Client and Host mode).

Format:
Statvar := EZ_WiFi_Set_Mode(Error, Mode);

The EZ_WiFi_Set_Mode function is used to configure the Wi-Fi mode of operation as Client or Host. See Chapter 30 -
Ethernet / Wi-Fi for more information modes of operation (Client and Host mode).

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Description:
The EZ_WiFi_Set_Mode sets the operational mode of the on-board Wi-Fi to either Client (0) or Host (1).The Statvar
variable returns the status of the function per the list above. When Statvar = 2 (complete), the Error value must be
checked for addtional errors (listed above as Error values). Refer to Chapter 30 - Ethernet / Wi-Fi for more information
regarding Wi-Fi modes of operation.

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 727

FUNCTION_BLOCK WifiSetMode
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Set_Mode(err, 0); (*Set to Client Mode*)
 RES := INT_TO_DINT(result);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN (*Format for writing to uart*)
 EZ_FormatString(buffer, 'Set Mode Completed');

 ELSE

 EZ_FormatString(buffer, 'Set MOde Error - Res: %d Er: %d $N', result, err);

 END_IF;

 (*Print result*)
 while EZ_UartWriteStr(FD_UART2, buffer) <= 0 do (*write to uart*)
 ;
 end_while;
 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

Example:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 728

EZ_WiFi_Set_Passcode
Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Index Index number to store the Passcode to (INT)(referred to as slot in Chapter 19). Valid Index is
 0-9. The passcode for an SSID to function properly must be stored in the same Index as the
 SSID itself (ie: the passcode Index should equal the SSID Index for proper operation).
Passcode Variable to hold the Passcode to be stored in the Wi-Fi module (STRING). This passcode is
 used to authenticate the to the network for the SSID stored at Index location. The Passcode
 string variable declaration should be large enough to handle the Passcode. If the Passcode is
 larger than the declared variable, it will be truncated.

Format:
Statvar := EZ_WiFi_Set_Passcode(Error, Index, Passcode);

The EZ_WiFi_Set_Passcode function is used write and store an SSID's passcode (to connect to a wi-fi network) to the
on-board Wi-Fi module SSID (network) connections list. A total of 10 passcodes (one for each SSID) may be stored.
These SSIDs storage locations are the same as described in Chapter 30. See Chapter 30 - Ethernet / Wi-Fi for more
information regarding SSID storage. The passcode location # should match the SSID location #.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 729

The EZ_WiFi_Set_Passcode writes / stores a Passcode value to the Wi-Fi module's memory at the Index location
(0-9). The passcode stored at the Index location should be the passcode to connect to the SSID of the same Index
location. For example, the SSID stored at index location (slot) 5 would use the passcode stored at index location 5. The
Statvar variable returns the status of the function per the list above. When Statvar = 2 (complete), the Error value must
be checked for addtional errors (listed above as Error values). Refer to Chapter 30 - Ethernet / Wi-Fi for more informa-
tion regarding SSID storage.

When writing passcodes to the Wi-Fi module, the write may take up to 20 seconds to complete.

Description:

FUNCTION_BLOCK WifiSetPasscode
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 index : INT := 3;
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Set_Passcode(err, index, '12345678'); (*Store passcode to index location 3*)
 RES := INT_TO_DINT(result);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN (*Format for writing to uart*)
 EZ_FormatString(buffer, 'Write Passcode Complete %d $N', index);

 ELSE

 EZ_FormatString(buffer, 'Write Passcode Err %d Res: %d Er: %d $N', index, result, err);

 END_IF;

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*write to uart*)
 ;
 end_while;
 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 730

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 731

EZ_WiFi_Set_Security

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Index Index number to store the Security Type to (INT)(referred to as slot in Chapter 19). Valid Index
 is 0-9. The Security Type for an SSID to function properly must be stored in the same Index as
 the SSID itself (ie: the SSID Index and passcode Index should equal the Security Type Index
 for proper operation).
Type Variable to hold the Security Type to be stored in the Wi-Fi module (INT). This Security Type is

Format:
Statvar := EZ_WiFi_Set_Security(Error, Index, Type);

The EZ_WiFi_Set_Security function is used write and store an SSID's security setting (to connect to a wi-fi network) to
the on-board Wi-Fi module SSID (network) connections list. A total of 10 security settings (one for each SSID) may be
stored. These SSIDs storage locations are the same as described in Chapter 30. See Chapter 30 - Ethernet / Wi-Fi
for more information regarding SSID storage. The security setting location # should match the SSID location # and
passcode location # for the SSID.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 732

 used to authenticate the to the network for the SSID stored at Index location. Supported values
 are:
 Value Security Type
 0 No Security
 3 WPA
 4 WPA2

The EZ_WiFi_Set_Security writes / stores the security Type value for the SSID to the Wi-Fi module's memory at the
Index location (0-9). The security Type stored at the Index location should be the security Type of the SSID (required to
connect to the SSID) of the same Index location. For example, the SSID stored at index location (slot) 5 would use the
passcode stored at index location 5 and the security Type stored at index location 5. The supported Types are listed
above. The Statvar variable returns the status of the function per the list above. When Statvar = 2 (complete), the Error
value must be checked for addtional errors (listed above as Error values). Refer to Chapter 30 - Ethernet / Wi-Fi for
more information regarding SSID storage.

Description:

FUNCTION_BLOCK WifiSetSecurity
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 index : INT := 3;
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Set_Security(err, index, 3); (*Store security type WPA to index location 3*)
 RES := INT_TO_DINT(result);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN (*Format for writing to uart*)
 EZ_FormatString(buffer, 'Write Security Complete %d $N', index);

 ELSE

 EZ_FormatString(buffer, 'Write Security Error %d Res: %d Er: %d $N', index, result, err);

 END_IF;

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*write to uart*)
 ;
 end_while;

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 733

 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 734

EZ_WiFi_Set_SSID

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.
Index Index number to store the SSID to (INT)(referred to as slot in Chapter 19). Valid Index is
 0-9.
SSID Variable to hold SSID to be stored in the Wi-Fi module (STRING). The SSID string variable
 declaration should be large enough to handle the SSID. If the SSID is larger than the declared
 variable, it will be truncated.

Format:
Statvar := EZ_WiFi_Set_SSID(Error, Index, SSID);

The EZ_WiFi_Set_SSID function is used write and store an SSID to the on-board Wi-Fi module SSID (network) con-
nections list. A total of 10 SSIDs may be stored. These SSIDs storage locations are the same as described in Chapter
30. See Chapter 30 - Ethernet / Wi-Fi for more information regarding SSID storage.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 735

The EZ_WiFi_Set_SSID writes / stores a known SSID value to the Wi-Fi module's memory at the Index location (0-9).
The Statvar variable returns the status of the function per the list above. When Statvar = 2 (complete), the Error value
must be checked for addtional errors (listed above as Error values). Refer to Chapter 30 - Ethernet / Wi-Fi for more
information regarding SSID storage.

Due to encryption calculations, when writing SSIDs to the Wi-Fi module, it may take up to 20 seconds to complete.

Description:

FUNCTION_BLOCK WifiSetSSID
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 ER : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool;
 err : INT;
 buffer : STRING[50];
 index : INT;
 END_VAR

 buffer := 'SSIDvalue01123456ABCDEF'; (*SSID to write to Wi-Fi module*)
 index := 0; (*Set index / slot to 0*)

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Set_SSID(err, index, buffer); (*keep calling / checking function until complete*)
 RES := INT_TO_DINT(result);
 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN
 (*No Error, format print data for uart*)
 EZ_FormatString(buffer, 'Write SSID Complete %d $N', index);

 ELSE

 (*Error, format print data for uart*)
 EZ_FormatString(buffer, 'Write SSID Error %d Res: %d Er: %d $N', index, result, err);

 END_IF;

 (*Print result*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do (*Print data to uart*)
 ;
 end_while;

 complete := TRUE; (*Finished*)
 ER := INT_TO_DINT(err);

Example:

Continued Next Page------»

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 736

 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 737

EZ_WiFi_Soft_Reset

Summary:

Statvar Function return holding variable (INT). Returns the status of the function's activity.
 This must be converted to a DINT before it can exported from structured text to the ladder
 diagram.
 Statvar Values

 2 Complete The Wi-Fi module completed processing the command.
 1 DataAvailable At least 1 AP record is available. The command is still processing
 and is not complete yet.
 0 Processing The Wi-Fi module is processing the command.
 -1 Locked Communication to the Wi-Fi module is locked. Try again later.
 -2 Busy The Wi-Fi module is processing another functions request.Try again
 later.
 -3 Invalid Parameter The function / command used an invalid parameter. Check the
 calling function and it's parameters and make corrections.
 -4 Error State The Wi-Fi module is in an error state (communications error from
 target to on-board Wi-Fi module). Wait and re-try again. If error
 persists or is constant, contact Divelbiss support.
 -5 Initializing The Wi-Fi module is in being initialized. Try again later.
 -6 Not Supported The installed W-Fi module is not supported or the Wi-Fi module has
 an internal problem and is undetectable. Contact Divelbiss support.
Error Variable to returned errors returned from Wi-Fi module (INT). These errors are only valid and
 should be checked after statvar = 2 (complete). Common expected errors are listed below. For
 other error codes, contact Divelbiss support.
 Error Values

 42 Illegal Value
 44 Number was expected but not received.
 48 String was expected not not received.
 119 WPA passphrase was too short, must be 8-63 characters.
 406 Command failed because Wi-Fi module is currently busy.

Format:
Statvar := EZ_WiFi_Soft_Reset(Error);

The EZ_WiFi_Soft_Reset function is used peform a soft reset to the on-board Wi-Fi module. When changing Wi-Fi
Module settings a power cycle or a soft reset using this function is required.

This function should be called / polled until it's status is compete (Statvar =2).

Arguments:

Continued Next Page------»

The EZ_WiFi_Soft_Reset forces a soft-reset to the on-board Wi-Fi module. Whenever Wi-Fi module settings are
changed, a Wi-Fi module power cycle or soft reset is required. The EZ_WiFi_Soft_Reset function is used to perform
this soft reset as needed. The Statvar variable returns the status of the function per the list above. When Statvar = 2
(complete), the Error value must be checked for addtional errors (listed above as Error values).

Description:

Appendix B Target Specific ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 738

FUNCTION_BLOCK WifiSoftReset
 VAR_INPUT
 Enable : bool;
 END_VAR
 VAR_OUTPUT
 Q : bool;
 RES : DINT;
 END_VAR
 VAR
 result : INT;
 complete: bool := FALSE;
 err : INT := 0;
 buffer : STRING[50];
 END_VAR

 IF ((Enable = TRUE) AND (complete = FALSE)) THEN

 result := EZ_Wifi_Soft_Reset(err); (*Reset Wi-Fi Module*)
 RES := INT_TO_DINT(result);

 IF (result <> 0) THEN

 IF (result = 2 and err = 0) THEN
 (*Successful soft reset*)
 EZ_FormatString(buffer, 'Soft Reset Complete $N');

 ELSE
 (*Error while reading from Wifi module*)

 EZ_FormatString(buffer, 'Soft Reset Error Res: %d Er: %d $N', result, err);

 END_IF;

 (*Write result to serial port*)
 while EZ_UartWriteStr(FD_UART3, buffer) <= 0 do
 ;
 end_while;

 complete := TRUE;
 END_IF;

 END_IF;

 IF (Enable = FALSE) THEN
 RES := 0;
 complete := FALSE;
 END_IF;

 Q := complete;

END_FUNCTION_BLOCK

Example:

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 739

Appendix C
Standard ST Function Reference

This chapter provides information on using Standard Structured Text Functions in EZ LAD-
DER Toolkit.

Chapter Contents
Standard ST Functions ...745

ABS ...746
ACOS ..746
ASIN ..746
ATAN ...746
BYTE_TO_DINT ...746
BYTE_TO_DWORD ..747
BYTE_TO_INT ..747
BYTE_TO_LINT ..747
BYTE_TO_LREAL ..747
BYTE_TO_LWORD ..747
BYTE_TO_REAL ..748
BYTE_TO_SINT ..748
BYTE_TO_UDINT ...748
BYTE_TO_UINT ...748
BYTE_TO_ULINT ...748
BYTE_TO_USINT ...749
BYTE_TO_WORD ..749
CONCAT ...749
COS ...749
DELETE ..749
DINT_TO_BYTE ...750
DINT_TO_DWORD ...750
DINT_TO_INT ...750
DINT_TO_LINT ...750
DINT_TO_LREAL ...750
DINT_TO_LWORD ..751
DINT_TO_REAL ...751
DINT_TO_SINT ...751
DINT_TO_UDINT ..751
DINT_TO_UINT ...751
DINT_TO_ULINT ..752
DINT_TO_USINT ..752

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 740

DINT_TO_WORD ..752
DWORD_TO_BYTE ..752
DWORD_TO_DINT ...752
DWORD_TO_INT ..753
DWORD_TO_LINT ...753
DWORD_TO_LREAL..753
DWORD_TO_LWORD ..753
DWORD_TO_REAL ..753
DWORD_TO_SINT ...754
DWORD_TO_UDINT ..754
DWORD_TO_UINT ...754
DWORD_TO_ULINT ...754
DWORD_TO_USINT ...754
DWORD_TO_WORD ..755
EXP ...755
EXPT ...755
FIND ..755
INSERT ...755
INT_TO_BYTE ..756
INT_TO_DINT ...756
INT_TO_DWORD ..756
INT_TO_LINT ..756
INT_TO_LREAL ..756
INT_TO_LWORD ..757
INT_TO_REAL ..757
INT_TO_SINT ...757
INT_TO_UDINT ...757
INT_TO_UINT ...757
INT_TO_ULINT ...758
INT_TO_USINT ...758
INT_TO_WORD ..758
LEFT ...758
LEN ...758
LIMIT ...759
LINT_TO_BYTE ..759
LINT_TO_DINT ...759
LINT_TO_DWORD ...759
LINT_TO_INT ..760
LINT_TO_LREAL..760
LINT_TO_LWORD ..760
LINT_TO_LREAL..760
LINT_TO_SINT ...760
LINT_TO_UDINT ..761
LINT_TO_UINT ...761
LINT_TO_ULINT ...761
LINT_TO_USINT ...761
LINT_TO_WORD ..761
LN ..762

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 741

LOG ...762
LREAL_TO_BYTE ..762
LREAL_TO_DINT ...762
LREAL_TO_DWORD ...762
LREAL_TO_INT ..763
LREAL_TO_LINT ...763
LREAL_TO_LWORD ..763
LREAL_TO_SINT ...763
LREAL_TO_UDINT ..763
LREAL_TO_UINT ...764
LREAL_TO_ULINT ...764
LREAL_TO_USINT ...764
LREAL_TO_WORD ..764
LSB_DINT_TO_ARRAY ...764
LSB_DWORD_TO_ARRAY ..765
LSB_INT_TO_ARRAY ..765
LSB_LINT_TO_ARRAY ..765
LSB_LREAL_TO_ARRAY ..765
LSB_LWORD_TO_ARRAY ..766
LSB_REAL_TO_ARRAY ..766
LSB_UDINT_TO_ARRAY ...766
LSB_UINT_TO_ARRAY ...766
LSB_ULINT_TO_ARRAY ...767
LSB_WORD_TO_ARRAY ..767
LWORD_TO_BYTE ..767
LWORD_TO_DINT ..767
LWORD_TO_DWORD ..767
LWORD_TO_INT ..768
LWORD_TO_LINT ..768
LWORD_TO_LREAL ..768
LWORD_TO_REAL ..768
LWORD_TO_SINT ..768
LWORD_TO_UDINT ...769
LWORD_TO_UINT ..769
LWORD_TO_ULINT ...769
LWORD_TO_USINT ...769
LWORD_TO_WORD ...769
MAX ..770
MID ..770
MIN ..770
MSB_DINT_TO_ARRAY ...770
MSB_DWORD_TO_ARRAY ...771
MSB_INT_TO_ARRAY ...771
MSB_LINT_TO_ARRAY ...771
MSB_LREAL_TO_ARRAY ...771
MSB_LWORD_TO_ARRAY ..772
MSB_REAL_TO_ARRAY ...772
MSB_UDINT_TO_ARRAY ..772

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 742

MSB_UINT_TO_ARRAY ...772
MSB_ULINT_TO_ARRAY ..773
MSB_WORD_TO_ARRAY ..773
MUX ..773
REAL_TO_BYTE ..773
REAL_TO_DINT ...774
REAL_TO_DWORD ..774
REAL_TO_INT ..774
REAL_TO_LINT ..774
REAL_TO_LWORD ..774
REAL_TO_SINT ...775
REAL_TO_UDINT ...775
REAL_TO_UINT ...775
REAL_TO_ULINT ...775
REAL_TO_USINT ...775
REAL_TO_WORD ..776
REPLACE ...776
RIGHT ...776
ROL ...776
ROR ..777
SEL ...777
SHL ...777
SHR ...777
SIN ..778
SINT_TO_BYTE ..778
SINT_TO_DINT ...778
SINT_TO_DWORD ...778
SINT_TO_INT ...778
SINT_TO_LINT ...779
SINT_TO_LREAL ...779
SINT_TO_LWORD ..779
SINT_TO_REAL..779
SINT_TO_UDINT ..779
SINT_TO_UINT ...780
SINT_TO_ULINT ...780
SINT_TO_USINT ..780
SINT_TO_WORD ..780
SQRT ..780
TAN ...781
TO_LSB_DINT ..781
TO_LSB_DWORD ..781
TO_LSB_INT ..781
TO_LSB_LINT ..782
TO_LSB_LREAL ..782
TO_LSB_LWORD ...782
TO_LSB_REAL...782
TO_LSB_UDINT ...783
TO_LSB_UINT ..783

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 743

TO_LSB_ULINT ..783
TO_LSB_WORD ...783
TO_MSB_DINT ...784
TO_MSB_DWORD ...784
TO_MSB_INT ..784
TO_MSB_LINT ...784
TO_MSB_LREAL..785
TO_MSB_LWORD ..785
TO_MSB_REAL ..785
TO_MSB_UDINT ..785
TO_MSB_UINT ...786
TO_MSB_ULINT ...786
TO_MSB_WORD ..786
TRUNC ..786
UDINT_TO_BYTE ...787
UDINT_TO_DINT ..787
UDINT_TO_DWORD ..787
UDINT_TO_INT ...787
UDINT_TO_LINT ..787
UDINT_TO_LREAL...788
UDINT_TO_LWORD ...788
UDINT_TO_REAL ...788
UDINT_TO_SINT ..788
UDINT_TO_UINT ..788
UDINT_TO_ULINT ..789
UDINT_TO_USINT ..789
UDINT_TO_WORD ...789
UINT_TO_BYTE ...789
UINT_TO_DINT ...789
UINT_TO_DWORD ...790
UINT_TO_INT ...790
UINT_TO_LINT ...790
UINT_TO_LREAL ...790
UINT_TO_LWORD ..790
UINT_TO_REAL ...791
UINT_TO_SINT ...791
UINT_TO_UDINT ..791
UINT_TO_ULINT ..791
UINT_TO_USINT ..791
UINT_TO_WORD ..792
ULINT_TO_BYTE ...792
ULINT_TO_DINT ..792
ULINT_TO_DWORD ...792
ULINT_TO_INT ...792
ULINT_TO_LINT ...793
ULINT_TO_LREAL ...793
ULINT_TO_LWORD ...793
ULINT_TO_REAL ...793

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 744

ULINT_TO_SINT ...793
ULINT_TO_UDINT ..794
ULINT_TO_UINT ..794
ULINT_TO_USINT ..794
ULINT_TO_WORD ...794
USINT_TO_BYTE ...794
USINT_TO_DINT ..795
USINT_TO_DWORD ...795
USINT_TO_INT ...795
USINT_TO_LINT ...795
USINT_TO_LREAL ...795
USINT_TO_LWORD ...796
USINT_TO_REAL ...796
USINT_TO_SINT ..796
USINT_TO_UDINT ..796
USINT_TO_UINT ..796
USINT_TO_ULINT ..797
USINT_TO_WORD ...797
WORD_TO_BYTE ..797
WORD_TO_DINT ..797
WORD_TO_DWORD ..797
WORD_TO_INT ..798
WORD_TO_LINT ..798
WORD_TO_LREAL ..798
WORD_TO_LWORD ...798
WORD_TO_REAL ..798
WORD_TO_SINT ..799
WORD_TO_UDINT ...799
WORD_TO_UINT ..799
WORD_TO_ULINT ...799
WORD_TO_USINT ...799

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 745

Standard ST Functions
Standard structured text functions are functions used in structured text that are supported across all hard-
ware targets. These typically include functions that convert variable types or modify a variable in some way.

Standard ST functions are found in the structured text editor in the Standard Functions tab (1st tab).

 The variable definitions provided below are used in descriptions for the functions shown in this
 Appendix. More details on their definition and structured text can be found in Chapter 26 -
 Structured Text.

Keyword Data Type Bit Size Internal Data Type Input/Output Data
Type

BOOL Boolean 1 X X
SINT Short Integer 8 X
INT Integer 16 X
DINT Double Integer 32 X X
LINT Long Integer 64 X
USINT Unsigned Short Integer 8 X
UINT Unsigned Integer 16 X
UDINT Unsigned Double Integer 32 X
ULINT Unsigned Long Integer 64 X
REAL Real Numbers 32 X X
LREAL Long Real Numbers 64 X
BYTE Bit String of length 8 8 X
WORD Bit String of length 16 16 X
DWORD Bit String of length 32 32 X
LWORD Bit String of length 64 64 X
ARRAY [..] OF Array of Type --- X
STRING [# of bytes] ASCII String of [x] bytes in length --- X

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 746

Function Name Function Details

ABS

Format:
AbsNum := ABS(AnyNum);
Description:
The ABS function returns the absolute as AbsNum of the provided (passed in) AnyNum
value.
Supported Variable Types:
AbsNum and AnyNum supports variable types LREAL, REAL, LINT, DINT, INT, SINT,
ULINT, UDINT, UINT, USINT.
Example:
ABSPSI := ABS(PSI);

ACOS

Format:
ACOSReal := ACOS(AnyReal);
Description:
The ACOS function returns the Arcosine as ACOSReal of the provided (passed in) Any-
Real value.
Supported Variable Types:
ACOSReal and AnyReal supports variable types LREAL, REAL
Example:
TMY:= ACOS(PB);

ASIN

Format:
ASINReal := ASIN(AnyReal);
Description:
The ASIN function returns the Arcsine as ASINReal of the provided (passed in) AnyReal
value.
Supported Variable Types:
ASINReal and AnyReal supports variable types LREAL, REAL
Example:
TMY:= ASIN(PB);

ATAN

Format:
ATANReal := ATAN(AnyReal);
Description:
The ATAN function returns the Arctangent as ATANReal of the provided (passed in)
AnyReal value.
Supported Variable Types:
ATANReal and AnyReal supports variable types LREAL, REAL
Example:
TMY:= ATAN(PB);

BYTE_TO_DINT

Format:
DINT := BYTE_TO_DINT(AnyByte);
Description:
The BYTE_TO_DINT function converts the AnyByte (Passed in) value into a double
integer and stores it in DINT.
Supported Variable Types:
DINT supports DINT variable type, AnyByte supports BYTE variable type.
Example:
ABC := BYTE_TO_DINT(XYZ);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 747

Function Name Function Details

BYTE_TO_DWORD

Format:
DWORD := BYTE_TO_DWORD(AnyByte);
Description:
The BYTE_TO_DWORD function converts the AnyByte (Passed in) value into a double
word and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type, AnyByte supports BYTE variable type.
Example:
MNO := BYTE_TO_DWORD(XYZ);

BYTE_TO_INT

Format:
INT := BYTE_TO_INT(AnyByte);
Description:
The BYTE_TO_INT function converts the AnyByte (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
INT supports INT variable type, AnyByte supports BYTE variable type.
Example:
DEF := BYTE_TO_INT(XYZ);

BYTE_TO_LINT

Format:
LINT := BYTE_TO_LINT(AnyByte);
Description:
The BYTE_TO_LINT function converts the AnyByte (Passed in) value into a long integer
and stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, AnyByte supports BYTE variable type.
Example:
KLM := BYTE_TO_LINT(XYZ);

BYTE_TO_LREAL

Format:
LREAL := BYTE_TO_LREAL(AnyByte);
Description:
The BYTE_TO_LREAL function converts the AnyByte (Passed in) value into a long real
and stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, AnyByte supports BYTE variables type.
Example:
GHI := BYTE_TO_LREAL(XYZ);

BYTE_TO_LWORD

Format:
LWORD := BYTE_TO_LWORD(AnyByte);
Description:
The BYTE_TO_LWORD function converts the AnyByte (Passed in) value into a long
word and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, AnyByte supports BYTE variable type.
Example:
CDE := BYTE_TO_LWORD(XYZ);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 748

Function Name Function Details

BYTE_TO_REAL

Format:
REAL := BYTE_TO_REAL(AnyByte);
Description:
The BYTE_TO_REAL function converts the AnyByte (Passed in) value into a real and
stores it in REAL.
Supported Variable Types:
REAL supports REAL variable type, AnyByte supports BYTE variable type.
Example:
PBX := BYTE_TO_REAL(XYZ);

BYTE_TO_SINT

Format:
SINT := BYTE_TO_SINT(AnyByte);
Description:
The BYTE_TO_SINT function converts the AnyByte (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type, AnyByte supports BYTE variable type.
Example:
RDS := BYTE_TO_SINT(XYZ);

BYTE_TO_UDINT

Format:
UDINT := BYTE_TO_UDINT(AnyByte);
Description:
The BYTE_TO_UDINT function converts the AnyByte (Passed in) value into a unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, AnyByte supports BYTE variable type.
Example:
BXD := BYTE_TO_UDINT(XYZ);

BYTE_TO_UINT

Format:
UINT := BYTE_TO_UINT(AnyByte);
Description:
The BYTE_TO_UINT function converts the AnyByte (Passed in) value into a unsigned
integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, AnyByte supports BYTE variable type.
Example:
RSA := BYTE_TO_UINT(XYZ);

BYTE_TO_ULINT

Format:
ULINT := BYTE_TO_ULINT(AnyByte);
Description:
The BYTE_TO_ULINT function converts the AnyByte (Passed in) value into a unsigned
long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, AnyByte supports BYTE variable type.
Example:
CBA := BYTE_TO_ULINT(XYZ);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 749

Function Name Function Details
BYTE_TO_USINT Format:

USINT := BYTE_TO_USINT(AnyByte);
Description:
The BYTE_TO_ULSNT function converts the AnyByte (Passed in) value into a unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, AnyByte supports BYTE variabl types.
Example:
DGA := BYTE_TO_USINT(XYZ);

BYTE_TO_WORD Format:
WORD := BYTE_TO_WORD(AnyByte);
Description:
The BYTE_TO_WORD function converts the AnyByte (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, AnyByte supports BYTE variable type.
Example:
LKT := BYTE_TO_WORD(XYZ);

CONCAT Format:
STRINGout := CONCAT(AnyStringIN1, AnyStringIN2);
Description:
The CONCAT function concatenates (combines) two strings input strings (AnyStringIN1,
AnyStringIN2) into a single string and stores it in STRINGout.
Supported Variable Types:
STRINGout, AnyStringIN1, AnyStringIN2 supports STRING variable type (must be de-
clared large enough to handle string size).
Example:
STRCMB := CONTCAT(STR1, STR2);

COS

Format:
COSReal := COS(AnyReal);
Description:
The COS function returns the Cosine as COSReal of the provided (passed in) AnyReal
value.
Supported Variable Types:
COSReal and AnyReal supports variable types LREAL, REAL
Example:
TMY:= COS(PB);

DELETE Format:
STRINGout := DELETE(AnyStringIN1, INTLGTH, INTPSTN);
Description:
The DELETE function deletes INTLGTH characters from AnyStringIN1, beginning at
INTPSTN and stores the result in STRINGout.
Supported Variable Types:
STRINGout, AnyStringIN1 supports STRING variable type. INTLGTH, INTPSTN support
LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable types.
Example:
STRRSLT := DELETE(STR1, LENGTH, POSITION);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 750

Function Name Function Details

DINT_TO_BYTE

Format:
AnyByte := DINT_TO_BYTE(DINT);
Description:
The DINT_TO_BYTE function converts the DINT (Passed in) value into a byte and stores
it in AnyByte.
Supported Variable Types:
DINT supports DINT variable type, AnyByte supports BYTE variable type.
Example:
XYZ := DINT_TO_BYTE(ABC);

DINT_TO_DWORD

Format:
DWORD := DINT_TO_DWORD(DINT);
Description:
The DINT_TO_DWORD function converts the DINT (Passed in) value into a double word
and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type, DINT supports DINT variable type.
Example:
MNO := DINT_TO_DWORD(ABC);

DINT_TO_INT

Format:
INT := DINT_TO_INT(DINT);
Description:
The DINT_TO_INT function converts the DINT (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
INT supports INT variable type, DINT supports DINT variable type.
Example:
DEF := DINT_TO_INT(ABC);

DINT_TO_LINT

Format:
LINT := DINT_TO_LINT(DINT);
Description:
The DINT_TO_LINT function converts the DINT (Passed in) value into a long integer and
stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, DINT supports DINT variable type.
Example:
KLM := DINT_TO_LINT(ABC);

DINT_TO_LREAL

Format:
LREAL := DINT_TO_LREAL(DINT);
Description:
The DINT_TO_LREAL function converts the DINT (Passed in) value into a long real and
stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, DINT supports DINT variable type.
Example:
GHI := DINT_TO_LREAL(ABC);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 751

Function Name Function Details

DINT_TO_LWORD

Format:
LWORD := DINT_TO_LWORD(DINT);
Description:
The DINT_TO_LWORD function converts the DINT (Passed in) value into a long word
and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, DINT supports DINT variable type.
Example:
CDE := DINT_TO_LWORD(ABC);

DINT_TO_REAL

Format:
REAL := DINT_TO_REAL(DINT);
Description:
The DINT_TO_REAL function converts the DINT (Passed in) value into a real and stores
it in REAL.
Supported Variable Types:
REAL supports REAL variable type, DINT supports DINT variable type.
Example:
PBX := DINT_TO_REAL(ABC);

DINT_TO_SINT

Format:
SINT := DINT_TO_SINT(DINT);
Description:
The DINT_TO_SINT function converts the DINT (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type, DINT supports DINT variable type.
Example:
RDS := DINT_TO_SINT(ABC);

DINT_TO_UDINT

Format:
UDINT := DINT_TO_UDINT(DINT);
Description:
The DINT_TO_UDINT function converts the DINT (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, DINT supports DINT variable type.
Example:
BXD := DINT_TO_UDINT(ABC);

DINT_TO_UINT

Format:
UINT := DINT_TO_UINT(DINT);
Description:
The DINT_TO_UINT function converts the DINT (Passed in) value into a unsigned inte-
ger and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, DINT supports DINT variable type.
Example:
RSA := DINT_TO_UINT(ABC);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 752

Function Name Function Details

DINT_TO_ULINT

Format:
ULINT := DINT_TO_ULINT(DINT);
Description:
The DINT_TO_ULINT function converts the DINT (Passed in) value into a unsigned long
integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, DINT supports DINT variable type.
Example:
CBA := DINT_TO_ULINT(ABC);

DINT_TO_USINT

Format:
USINT := DINT_TO_USINT(DINT);
Description:
The DINT_TO_USINT function converts the DINT (Passed in) value into a unsigned short
integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, DINT supports DINT variable type.
Example:
DGA := DINT_TO_USINT(ABC);

DINT_TO_WORD

Format:
WORD := DINT_TO_WORD(DINT);
Description:
The DINT_TO_WORD function converts the DINT (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, DINT supports DINT variable type.
Example:
LKT := DINT_TO_WORD(ABC);

DWORD_TO_BYTE

Format:
AnyByte := DWORD_TO_BYTE(DWORD);
Description:
The DWORD_TO_BYTE function converts the DWORD (Passed in) value into a byte and
stores it in AnyByte.
Supported Variable Types:
DWORD supports DWORD variable type, AnyByte supports BYTE variable type.
Example:
XYZ := DWORD_TO_BYTE(MNO);

DWORD_TO_DINT

Format:
DINT := DWORD_TO_DINT(DWORD);
Description:
The DWORD_TO_DINT function converts the DWORD (Passed in) value into a double
integer and stores it in DINT.
Supported Variable Types:
DWORD supports DWORD variable type, DINT supports DINT variable type.
Example:
ABC := DWORD_TO_DINT(MNO);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 753

Function Name Function Details

DWORD_TO_INT

Format:
INT := DWORD_TO_INT(DWORD);
Description:
The DWORD_TO_INT function converts the DWORD (Passed in) value into an integer
and stores it in INT.
Supported Variable Types:
DWORD supports DWORD variable type, INT supports INT variable type.
Example:
ABC := DWORD_TO_INT(MNO);

DWORD_TO_LINT

Format:
LINT := DWORD_TO_LINT(DWORD);
Description:
The DWORD_TO_LINT function converts the DWORD (Passed in) value into a long
integer and stores it in LINT.
Supported Variable Types:
DWORD supports DWORD variable type, LINT supports LINT variable type.
Example:
KLM := DWORD_TO_LINT(MNO);

DWORD_TO_LREAL

Format:
LREAL := DWORD_TO_LREAL(DWORD);
Description:
The DWORD_TO_LREAL function converts the DWORD (Passed in) value into a long
real and stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, DWORD supports DWORD variable type.
Example:
GHI := DWORD_TO_LREAL(MNO);

DWORD_TO_LWORD

Format:
LWORD := DWORD_TO_LWORD(DWORD);
Description:
The DWORD_TO_LWORD function converts the DWORD (Passed in) value into a long
word and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, DWORD supports DWORD variable type.
Example:
CDE := DWORD_TO_LWORD(MNO);

DWORD_TO_REAL

Format:
REAL := DWORD_TO_REAL(DWORD);
Description:
The DWORD_TO_REAL function converts the DWORD (Passed in) value into a real and
stores it in REAL.
Supported Variable Types:
REAL supports REAL variable type, DWORD supports DWORD variable type.
Example:
PBX := DWORD_TO_REAL(MNO);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 754

Function Name Function Details

DWORD_TO_SINT

Format:
SINT := DWORD_TO_SINT(DWORD);
Description:
The DWORD_TO_SINT function converts the DWORD (Passed in) value into a short
integer and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type, DWORD supports DWORD variable type.
Example:
RDS := DWORD_TO_SINT(MNO);

DWORD_TO_UDINT

Format:
DINT := DWORD_TO_UDINT(DWORD);
Description:
The DWORD_TO_UDINT function converts the DWORD (Passed in) value into an un-
signed double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, DWORD supports DWORD variable type.
Example:
BXD := DWORD_TO_UDINT(MNO);

DWORD_TO_UINT

Format:
UINT := DWORD_TO_UINT(DWORD);
Description:
The DWORD_TO_UINT function converts the DWORD (Passed in) value into an un-
signed integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, DWORD supports DWORD variable type.
Example:
RSA := DWORD_TO_UINT(MNO);

DWORD_TO_ULINT

Format:
ULINT := DWORD_TO_ULINT(DWORD);
Description:
The DWORD_TO_ULINT function converts the DWORD (Passed in) value into an un-
signed long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, DWORD supports DWORD variable type.
Example:
CBA := DWORD_TO_ULINT(MNO);

DWORD_TO_USINT

Format:
USINT := DWORD_TO_USINT(DWORD);
Description:
The DWORD_TO_USINT function converts the DWORD (Passed in) value into an un-
signed short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, DWORD supports DWORD variable type.
Example:
DGA := DWORD_TO_USINT(MNO);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 755

Function Name Function Details

DWORD_TO_WORD

Format:
WORD := DWORD_TO_WORD(DWORD);
Description:
The DWORD_TO_WORD function converts the DWORD (Passed in) value into a WORD
and stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, DWORD supports DWORD variable type.
Example:
LKT := DWORD_TO_WORD(MNO);

EXP

Format:
EXPReal := EXP(AnyReal);
Description:
The EXP function returns the natureal exponential as EXPReal of the provided (passed
in) AnyReal value.
Supported Variable Types:
EXPReal and AnyReal supports variable types LREAL, REAL
Example:
TMY:= EXP(PB);

EXPT

Format:
EXPTNum := EXPT(AnyNum1, AnyNum2);
Description:
The EXPT function returns the exponentation of the provided (passed in) AnyNum1 and
AnyNum2 values.
Supported Variable Types:
EXPTNum, AnyNum1 and AnyNum2 supports variable types LREAL, REAL, LINT, DINT,
INT, SINT, ULINT, UDINT, UINT, USINT.
Example:
LMI:= EXPT(TUV, RXL);

FIND

Format:
AnyInt := FIND(AnyStringIN1, AnyStringIN2);
Description:
The FIND function searches for the AnyStringIN2 provided inside the AnyStringIN1 pro-
vided. It will return the location where AnyStringIN2 begins as AnyInt. If the AnyStringIN2
provided is not found, then it returns a zero (0).
Supported Variable Types:
 AnyStringIN1 and AnyStringIN2 supports STRING variable type. AnyInt supports LINT,
DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable types.
Example:
ABC := FIND(STR1, STR2);

INSERT

Format:
STRINGout := INSERT(AnyStringIN1, AnyStringIN2, AnyInt);
Description:
The INSERT function inserts AnyStringIN1 into AnyStringIN2 starting after the position
provided as AnyInt.
Supported Variable Types:
 STRINGout, AnyStringIN1 and AnyStringIN2 supports STRING variable type. AnyInt
supports LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable types.
Example:
STRRSLT := INSERT(STR1, STR2, ABC);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 756

Function Name Function Details

INT_TO_BYTE

Format:
AnyByte := INT_TO_BYTE(INT);
Description:
The INT_TO_BYTE function converts the INT (Passed in) value into a byte and stores it
in AnyByte.
Supported Variable Types:
INT supports INT variable type, AnyByte supports BYTE variable type.
Example:
XYZ := INT_TO_BYTE(DEF);

INT_TO_DINT

Format:
DINT := INT_TO_DINT(INT);
Description:
The INT_TO_DINT function converts the INT (Passed in) value into a double integer and
stores it in DINT.
Supported Variable Types:
INT supports INT variable type, DINT supports DINT variable type.
Example:
ABC := INT_TO_DINT(DEF);

INT_TO_DWORD

Format:
DWORD := INT_TO_DWORD(INT);
Description:
The INT_TO_DWORD function converts the INT (Passed in) value into a double word
and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type, INT supports INT variable type.
Example:
MNO := INT_TO_DWORD(DEF);

INT_TO_LINT

Format:
LINT := INT_TO_LINT(INT);
Description:
The INT_TO_LINT function converts the INT (Passed in) value into a long integer and
stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, INT supports INT variable type.
Example:
KLM := INT_TO_LINT(DEF);

INT_TO_LREAL

Format:
LREAL := INT_TO_LREAL(INT);
Description:
The INT_TO_LREAL function converts the INT (Passed in) value into a long real and
stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, INT supports INT variable type.
Example:
GHI := INT_TO_LREAL(DEF);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 757

Function Name Function Details

INT_TO_LWORD

Format:
LWORD := INT_TO_LWORD(INT);
Description:
The INT_TO_LWORD function converts the INT (Passed in) value into a long word and
stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, INT supports INT variable type.
Example:
CDE := INT_TO_LWORD(DEF);

INT_TO_REAL

Format:
REAL := INT_TO_REAL(INT);
Description:
The INT_TO_REAL function converts the INT (Passed in) value into a real and stores it
in REAL.
Supported Variable Types:
REAL supports REAL variable type, INT supports INT variable type.
Example:
PBX := INT_TO_REAL(DEF);

INT_TO_SINT

Format:
SINT := INT_TO_SINT(INT);
Description:
The INT_TO_SINT function converts the INT (Passed in) value into a short integer and
stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type, INT supports INT variable type.
Example:
RDS := DINT_TO_SINT(DEF);

INT_TO_UDINT

Format:
UDINT := INT_TO_UDINT(INT);
Description:
The INT_TO_UDINT function converts the INT (Passed in) value into an unsigned double
integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, INT supports INT variable type.
Example:
BXD := INT_TO_UDINT(DEF);

INT_TO_UINT

Format:
UINT := INT_TO_UINT(INT);
Description:
The INT_TO_UINT function converts the INT (Passed in) value into an unsigned integer
and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, INT supports INT variable type.
Example:
RSA := INT_TO_UINT(DEF);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 758

Function Name Function Details

INT_TO_ULINT

Format:
ULINT := INT_TO_ULINT(INT);
Description:
The INT_TO_ULINT function converts the INT (Passed in) value into an unsigned long
integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, INT supports INT variable type.
Example:
CBA := INT_TO_ULINT(DEF);

INT_TO_USINT

Format:
USINT := INT_TO_USINT(INT);
Description:
The INT_TO_USINT function converts the INT (Passed in) value into an unsigned short
integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, INT supports INT variable type.
Example:
DGA := INT_TO_USINT(DEF);

INT_TO_WORD

Format:
WORD := INT_TO_WORD(INT);
Description:
The INT_TO_WORD function converts the INT (Passed in) value into a word and stores
it in WORD.
Supported Variable Types:
WORD supports WORD variable type, INT supports INT variable type.
Example:
LKT := INT_TO_WORD(DEF);

LEFT

Format:
STRINGout := LEFT(AnyStringIN, AnyInt);
Description:
The LEFT function returns the left most AnyInt number of characters of AnyStringIN and
stores them in STRINGout.
Supported Variable Types:
 STRINGout and AnyStringIN supports STRING variable type. AnyInt supports LINT,
DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable types.
Example:
STRRSLT := LEFT(STR1, ABC);

LEN

Format:
AnyInt := LEN(AnyStringIN);
Description:
The LEN function returns the number of characters (length) of AnyStringIN and stores
the result in AnyInt.
Supported Variable Types:
 AnyStringIN supports STRING variable type. AnyInt supports LINT, DINT, INT, SINT,
ULINT, UDINT, UINT, USINT variable types.
Example:
ABC := LEN(STR1);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 759

Function Name Function Details

LIMIT

Format:
AnyNumLimit := LIMIT(AnyNumMin, AnyNum, AnyNumMax);
Description:
The LIMIT function limits the AnyNum passed value between the AnyNumMin (minimum
limit) and the AnyNumMax (maximum limit). When the AnyNum value is between the
two values, the output of the function will be equal to AnyNum (stored in AnyNumLimit).
When less than or equal to the minimum or greater than or equal to the maximum, the
output of the function (stored in AnyNumLimit) will be equal to either the minimum or
maximum, respectively.
Supported Variable Types:
AnyNumLimit, AnyNumMin, AnyNum and AnyNumMax supports variable types LREAL,
REAL, LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT.
Example:
LMTVAL := LIMIT(MN,VIN,MX);

LINT_TO_BYTE

Format:
AnyByte := LINT_TO_BYTE(LINT);
Description:
The LINT_TO_BYTE function converts the LINT (Passed in) value into a byte and stores
it in AnyByte.
Supported Variable Types:
LINT supports LINT variable type, AnyByte supports BYTE variable type.
Example:
XYZ := LINT_TO_BYTE(KLM);

LINT_TO_DINT

Format:
DINT := LINT_TO_DINT(LINT);
Description:
The LINT_TO_DINT function converts the LINT (Passed in) value into a double integer
and stores it in DINT.
Supported Variable Types:
LINT supports LINT variable type. DINT supports DINT variable type.
Example:
ABC := LINT_TO_DINT(KLM);

LINT_TO_DWORD

Format:
DWORD := LINT_TO_DWORD(LINT);
Description:
The LINT_TO_DWORD function converts the LINT (Passed in) value into a double word
and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type, LINT supports LINT variable type.
Example:
MNO := LINT_TO_DWORD(KLM);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 760

Function Name Function Details

LINT_TO_INT

Format:
INT := LINT_TO_INT(LINT);
Description:
The LINT_TO_INT function converts the LINT (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
LINT supports LINT variable type, INT supports INT variable type.
Example:
DEF := LINT_TO_INT(KLM);

LINT_TO_LREAL

Format:
LREAL := LINT_TO_LREAL(LINT);
Description:
The LINT_TO_LREAL function converts the LINT (Passed in) value into a long real and
stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, LINT supports LINT variable type.
Example:
GHI := LINT_TO_LREAL(KLM);

LINT_TO_LWORD

Format:
LWORD := LINT_TO_LWORD(LINT);
Description:
The LINT_TO_LWORD function converts the LINT (Passed in) value into a long word
and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, LINT supports LINT variable type.
Example:
CDE := LINT_TO_LWORD(KLM);

LINT_TO_LREAL

Format:
LREAL := LINT_TO_LREAL(LINT);
Description:
The LINT_TO_LREAL function converts the LINT (Passed in) value into a long real and
stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, LINT supports LINT variable type.
Example:
GHI := LINT_TO_LREAL(KLM);

LINT_TO_SINT

Format:
SINT := LINT_TO_SINT(LINT);
Description:
The LINT_TO_SINT function converts the LINT (Passed in) value into a short integer and
stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type, LINT supports LINT variable type.
Example:
RDS := LINT_TO_SINT(KLM);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 761

Function Name Function Details

LINT_TO_UDINT

Format:
UDINT := LINT_TO_UDINT(LINT);
Description:
The LINT_TO_UDINT function converts the LINT (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, LINT supports LINT variable type.
Example:
BXD := LINT_TO_UDINT(KLM);

LINT_TO_UINT

Format:
UINT := LINT_TO_UINT(LINT);
Description:
The LINT_TO_UINT function converts the LINT (Passed in) value into an unsigned inte-
ger and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, LINT supports LINT variable type.
Example:
RSA := LINT_TO_UINT(KLM);

LINT_TO_ULINT

Format:
ULINT := LINT_TO_ULINT(LINT);
Description:
The LINT_TO_ULINT function converts the LINT (Passed in) value into an unsigned long
integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, LINT supports LINT variable type.
Example:
CBA := LINT_TO_ULINT(KLM);

LINT_TO_USINT

Format:
USINT := LINT_TO_USINT(LINT);
Description:
The LINT_TO_USINT function converts the LINT (Passed in) value into an unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, LINT supports LINT variable type.
Example:
DGA := LINT_TO_USINT(KLM);

LINT_TO_WORD

Format:
WORD := LINT_TO_WORD(LINT);
Description:
The LINT_TO_WORD function converts the LINT (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, LINT supports LINT variable type.
Example:
LKT := LINT_TO_WORD(KLM);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 762

Function Name Function Details

LN

Format:
LNReal := LN(AnyReal);
Description:
The LN function returns the natural logarithm of the passed in variable AnyReal and
stores the result in LNReal.
Supported Variable Types:
LNReal and AnyReal supports variable types LREAL, REAL.
Example:
LNRSLT:= LN(PBX);

LOG

Format:
LGReal := LOG(AnyReal);
Description:
The LOG function returns the logarith base 10 of the passed in variable AnyReal and
stores the result in LGReal.
Supported Variable Types:
LGReal and AnyReal supports variable types LREAL, REAL.
Example:
LGRSLT:= LOG(PBX);

LREAL_TO_BYTE

Format:
AnyByte := LREAL_TO_BYTE(LREAL);
Description:
The LREAL_TO_BYTE function converts the LREAL (Passed in) value into a byte and
stores it in AnyByte.
Supported Variable Types:
LREAL supports LREAL variable type, AnyByte supports BYTE variable type.
Example:
XYZ := LREAL_TO_BYTE(GHI);

LREAL_TO_DINT

Format:
DINT := LREAL_TO_DINT(LREAL);
Description:
The LREAL_TO_DINT function converts the LREAL (Passed in) value into a double
integer and stores it in DINT.
Supported Variable Types:
LREAL supports LREAL variable type, DINT supports DINT variable type.
Example:
ABC := LREAL_TO_DINT(GHI);

LREAL_TO_DWORD

Format:
DWORD := LREAL_TO_DWORD(LREAL);
Description:
The LREAL_TO_DWORD function converts the LREAL (Passed in) value into a double
word and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type, LREAL supports LREAL variable type.
Example:
MNO := LREAL_TO_DWORD(GHI);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 763

Function Name Function Details

LREAL_TO_INT

Format:
INT := LREAL_TO_INT(LREAL);
Description:
The LREAL_TO_INT function converts the LREAL (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
LREAL supports LREAL variable type, INT supports INT variable type.
Example:
DEF := LREAL_TO_INT(GHI);

LREAL_TO_LINT

Format:
LINT := LREAL_TO_LINT(LREAL);
Description:
The LREAL_TO_LINT function converts the LREAL (Passed in) value into a long integer
and stores it in LINT.
Supported Variable Types:
LREAL supports LREAL variable type, LINT supports LINT variable type.
Example:
KLM := LREAL_TO_LINT(GHI);

LREAL_TO_LWORD

Format:
LWORD := LREAL_TO_LWORD(LREAL);
Description:
The LREAL_TO_LWORD function converts the LREAL (Passed in) value into a long
word and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, LREAL supports LREAL variable type.
Example:
CDE := LREAL_TO_LWORD(GHI);

LREAL_TO_SINT

Format:
SINT := LREAL_TO_SINT(LREAL);
Description:
The LREAL_TO_SINT function converts the LREAL (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type, LREAL supports LREAL variable type.
Example:
RDS := LREAL_TO_SINT(GHI);

LREAL_TO_UDINT

Format:
UDINT := LREAL_TO_UDINT(LREAL);
Description:
The LREAL_TO_UDINT function converts the LREAL (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, LREAL supports LREAL variable type.
Example:
BXD := LREAL_TO_UDINT(GHI);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 764

Function Name Function Details

LREAL_TO_UINT

Format:
UINT := LREAL_TO_UINT(LREAL);
Description:
The LREAL_TO_UINT function converts the LREAL (Passed in) value into an unsigned
integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, LREAL supports LREAL variable type.
Example:
RSA := LREAL_TO_UINT(GHI);

LREAL_TO_ULINT

Format:
ULINT := LREAL_TO_ULINT(LREAL);
Description:
The LREAL_TO_ULINT function converts the LREAL (Passed in) value into an unsigned
long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, LREAL supports LREAL variable type.
Example:
CBA := LREAL_TO_ULINT(GHI);

LREAL_TO_USINT

Format:
USINT := LREAL_TO_USINT(LREAL);
Description:
The LREAL_TO_USINT function converts the LREAL (Passed in) value into an unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, LREAL supports LREAL variable type.
Example:
DGA := LREAL_TO_USINT(GHI);

LREAL_TO_WORD

Format:
WORD := LREAL_TO_WORD(LREAL);
Description:
The LREAL_TO_WORD function converts the LREAL (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, LREAL supports LREAL variable type.
Example:
LKT := LREAL_TO_WORD(GHI);

LSB_DINT_TO_ARRAY

Format:
LSB_DINT_TO_ARRAY(ArrayAnyType, DINToffset, DINTval);
Description:
The LSB_DINT_TO_ARRAY function converts the DINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset and DINTval
supports DINT variable type.
Example:
LSB_DINT_TO_ARRAY(TXBUFF, OFST, VLIN);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 765

Function Name Function Details

LSB_DWORD_TO_ARRAY

Format:
LSB_DWORD_TO_ARRAY(ArrayAnyType, DINToffset, DWORDval);
Description:
The LSB_DWORD_TO_ARRAY function converts the DWORDval and stores it into an
array (ArrayAnyType) beginning at the offset location specified with DINToffset. The val-
ues are converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. DWORDval supports DWORD variable type.
Example:
LSB_DWORD_TO_ARRAY(TXBUFF, OFST, VLIN);

LSB_INT_TO_ARRAY

Format:
LSB_INT_TO_ARRAY(ArrayAnyType, DINToffset, INTval);
Description:
The LSB_INT_TO_ARRAY function converts the INTval and stores it into an array (Ar-
rayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. INTval supports INT variable type.
Example:
LSB_INT_TO_ARRAY(TXBUFF, OFST, VLIN);

LSB_LINT_TO_ARRAY

Format:
LSB_LINT_TO_ARRAY(ArrayAnyType, DINToffset, LINTval);
Description:
The LSB_LINT_TO_ARRAY function converts the LINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. LINTval supports LINT variable type.
Example:
LSB_LINT_TO_ARRAY(TXBUFF, OFST, VLIN);

LSB_LREAL_TO_ARRAY

Format:
LSB_LREAL_TO_ARRAY(ArrayAnyType, DINToffset, LREALval);
Description:
The LSB_LREAL_TO_ARRAY function converts the LREALval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. LREALval supports LREAL variable type.
Example:
LSB_LREAL_TO_ARRAY(TXBUFF, OFST, VLIN);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 766

Function Name Function Details

LSB_LWORD_TO_ARRAY

Format:
LSB_LWORD_TO_ARRAY(ArrayAnyType, DINToffset, LWORDval);
Description:
The LSB_LWORD_TO_ARRAY function converts the LWORDval and stores it into an ar-
ray (ArrayAnyType) beginning at the offset location specified with DINToffset. The values
are converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. LWORDval supports LWORD variable type.
Example:
LSB_LWORD_TO_ARRAY(TXBUFF, OFST, VLIN);

LSB_REAL_TO_ARRAY

Format:
LSB_REAL_TO_ARRAY(ArrayAnyType, DINToffset, REALval);
Description:
The LSB_REAL_TO_ARRAY function converts the REALval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. REALval supports REAL variable type.
Example:
LSB_REAL_TO_ARRAY(TXBUFF, OFST, VLIN);

LSB_UDINT_TO_ARRAY

Format:
LSB_UDINT_TO_ARRAY(ArrayAnyType, DINToffset, UDINTval);
Description:
The LSB_UDINT_TO_ARRAY function converts the UDINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. UDINTval supports UDINT variable type.
Example:
LSB_UDINT_TO_ARRAY(TXBUFF, OFST, VLIN);

LSB_UINT_TO_ARRAY

Format:
LSB_UINT_TO_ARRAY(ArrayAnyType, DINToffset, UINTval);
Description:
The LSB_UINT_TO_ARRAY function converts the UINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. UINTval supports UINT variable type.
Example:
LSB_UINT_TO_ARRAY(TXBUFF, OFST, VLIN);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 767

Function Name Function Details

LSB_ULINT_TO_ARRAY

Format:
LSB_ULINT_TO_ARRAY(ArrayAnyType, DINToffset, ULINTval);
Description:
The LSB_ULINT_TO_ARRAY function converts the ULINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. ULINTval supports ULINT variable type.
Example:
LSB_ULINT_TO_ARRAY(TXBUFF, OFST, VLIN);

LSB_WORD_TO_ARRAY

Format:
LSB_WORD_TO_ARRAY(ArrayAnyType, DINToffset, WORDval);
Description:
The LSB_WORD_TO_ARRAY function converts the WORDval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in LSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. WORDval supports WORD variable type.
Example:
LSB_WORD_TO_ARRAY(TXBUFF, OFST, VLIN);

LWORD_TO_BYTE

Format:
AnyByte := LWORD_TO_BYTE(LWORD);
Description:
The LWORD_TO_BYTE function converts the LWORD (Passed in) value into a byte and
stores it in AnyByte.
Supported Variable Types:
LWORD supports LWORD variable type. AnyByte supports BYTE variable type.
Example:
XYZ := LWORD_TO_BYTE(CDE);

LWORD_TO_DINT

Format:
DINT := LWORD_TO_DINT(LWORD);
Description:
The LWORD_TO_DINT function converts the LWORD (Passed in) value into a double
integer and stores it in DINT.
Supported Variable Types:
LWORD supports LWORD variable type. DINT supports DINT variable type.
Example:
ABC := LWORD_TO_DINT(CDE);

LWORD_TO_DWORD

Format:
DWORD := LWORD_TO_DWORD(LWORD);
Description:
The LWORD_TO_DWORD function converts the LWORD (Passed in) value into a double
word and stores it in DWORD.
Supported Variable Types:
LWORD supports LWORD variable type, DWORD supports DWORD variable type.
Example:
MNO := LWORD_TO_DWORD(CDE);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 768

Function Name Function Details

LWORD_TO_INT

Format:
INT := LWORD_TO_INT(LWORD);
Description:
The LWORD_TO_INT function converts the LWORD (Passed in) value into an integer
and stores it in INT.
Supported Variable Types:
LWORD supports LWORD variable type. INT supports INT variable type.
Example:
DEF := LWORD_TO_INT(CDE);

LWORD_TO_LINT

Format:
LINT := LWORD_TO_LINT(LWORD);
Description:
The LWORD_TO_LINT function converts the LWORD (Passed in) value into a long inte-
ger and stores it in LINT.
Supported Variable Types:
LWORD supports LWORD variable type,.LINT supports LINT variable type.
Example:
KLM := LWORD_TO_LINT(CDE);

LWORD_TO_LREAL

Format:
LREAL := LWORD_TO_LREAL(LWORD);
Description:
The LWORD_TO_LREAL function converts the LWORD (Passed in) value into a long
real and stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type. LWORD supports LWORD variable type.
Example:
GHI := LWORD_TO_LREAL(CDE);

LWORD_TO_REAL

Format:
REAL := LWORD_TO_REAL(LWORD);
Description:
The LWORD_TO_REAL function converts the LWORD (Passed in) value into a real and
stores it in REAL.
Supported Variable Types:
REAL supports REAL variable type. LWORD supports LWORD variable type.
Example:
PBX := LWORD_TO_REAL(CDE);

LWORD_TO_SINT

Format:
SINT := LWORD_TO_SINT(LWORD);
Description:
The LWORD_TO_SINT function converts the LWORD (Passed in) value into a short
integer and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type. LWORD supports LWORD variable type.
Example:
RDS := LWORD_TO_SINT(CDE);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 769

Function Name Function Details

LWORD_TO_UDINT

Format:
UDINT := LWORD_TO_UDINT(LWORD);
Description:
The LWORD_TO_UDINT function converts the LWORD (Passed in) value into an un-
signed double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type. LWORD supports LWORD variable type.
Example:
BXD := LWORD_TO_UDINT(CDE);

LWORD_TO_UINT

Format:
UINT := LWORD_TO_UINT(LWORD);
Description:
The LWORD_TO_UINT function converts the LWORD (Passed in) value into an un-
signed integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type. LWORD supports LWORD variable type.
Example:
RSA := LWORD_TO_UINT(CDE);

LWORD_TO_ULINT

Format:
ULINT := LWORD_TO_ULINT(LWORD);
Description:
The LWORD_TO_ULINT function converts the LWORD (Passed in) value into an un-
signed long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, LWORD supports LWORD variable type.
Example:
CBA := LWORD_TO_ULINT(CDE);

LWORD_TO_USINT

Format:
USINT := LWORD_TO_USINT(LWORD);
Description:
The LWORD_TO_USINT function converts the LWORD (Passed in) value into an un-
signed short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type. LWORD supports LWORD variable type.
Example:
DGA := LWORD_TO_USINT(CDE);

LWORD_TO_WORD

Format:
WORD := LWORD_TO_WORD(LWORD);
Description:
The LWORD_TO_WORD function converts the LWORD (Passed in) value into a word
and stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type. LWORD supports LWORD variable type.
Example:
LKT := LWORD_TO_WORD(CDE);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 770

Function Name Function Details

MAX

Format:
AnyNumMax := MAX(AnyNumIn1, AnyNumIn2....AnyNuminX);
Description:
The MAX function evaluates all the number variables passed into it (AnyNumIn1, AnyNu-
mIn2....AnyNuminX) and returns the maximum (largest) of them and stores it in AnyNum-
Max. The number of variables to input must be a minimum of two, but can have more.
Supported Variable Types:
AnyNumMax, AnyNumIn1, AnyNumIn2 and AnyNuminX supports variable types LREAL,
REAL, LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT.
Example:
 RTNABC:= MAX(V1,V2,V3,V4);

MID

Format:
STRINGout := MID(AnyStringIN, AnyIntLgth, AnyIntPos);
Description:
The MID function searches the AnyStringIN string and returns the number of charac-
ters (length) specified in AnyIntLgth, starting at AnyIntPos character of the string. The
returned string is stored in STRINGout.
Supported Variable Types:
 STRINGout and AnyStringIN1 supports STRING variable type. AnyIntLgth and AnyInt-
Pos supports LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable types.
Example:
STRRSLT := MID(STR1, A, B);

MIN

Format:
AnyNumMin := MIN(AnyNumIn1, AnyNumIn2....AnyNuminX);
Description:
The MIN function evaluates all the number variables passed into it (AnyNumIn1, Any-
NumIn2....AnyNuminX) and returns the minimum (smallest) of them and stores it in
AnyNumMin. The number of variables to input must be a minimum of two, but can have
more.
Supported Variable Types:
AnyNumMin, AnyNumIn1, AnyNumIn2 and AnyNuminX supports variable types LREAL,
REAL, LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT.
Example:
 RTNABC:= MIN(V1,V2,V3,V4);

MSB_DINT_TO_ARRAY

Format:
MSB_DINT_TO_ARRAY(ArrayAnyType, DINToffset, DINTval);
Description:
The MSB_DINT_TO_ARRAY function converts the DINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset and DINTval
supports DINT variable type.
Example:
MSB_DINT_TO_ARRAY(TXBUFF, OFST, VLIN);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 771

Function Name Function Details

MSB_DWORD_TO_ARRAY

Format:
MSB_DWORD_TO_ARRAY(ArrayAnyType, DINToffset, DWORDval);
Description:
The MSB_DWORD_TO_ARRAY function converts the DWORDval and stores it into
an array (ArrayAnyType) beginning at the offset location specified with DINToffset. The
values are converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. DWORDval supports DWORD variable type.
Example:
MSB_DWORD_TO_ARRAY(TXBUFF, OFST, VLIN);

MSB_INT_TO_ARRAY

Format:
MSB_INT_TO_ARRAY(ArrayAnyType, DINToffset, INTval);
Description:
The MSB_INT_TO_ARRAY function converts the INTval and stores it into an array (Ar-
rayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. INTval supports INT variable type.
Example:
MSB_INT_TO_ARRAY(TXBUFF, OFST, VLIN);

MSB_LINT_TO_ARRAY

Format:
MSB_LINT_TO_ARRAY(ArrayAnyType, DINToffset, LINTval);
Description:
The MSB_LINT_TO_ARRAY function converts the LINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. LINTval supports LINT variable type.
Example:
MSB_LINT_TO_ARRAY(TXBUFF, OFST, VLIN);

MSB_LREAL_TO_ARRAY

Format:
MSB_LREAL_TO_ARRAY(ArrayAnyType, DINToffset, LREALval);
Description:
The MSB_LREAL_TO_ARRAY function converts the LREALval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. LREALval supports LREAL variable type.
Example:
MSB_LREAL_TO_ARRAY(TXBUFF, OFST, VLIN);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 772

Function Name Function Details

MSB_LWORD_TO_ARRAY

Format:
MSB_LWORD_TO_ARRAY(ArrayAnyType, DINToffset, LWORDval);
Description:
The MSB_LWORD_TO_ARRAY function converts the LWORDval and stores it into an ar-
ray (ArrayAnyType) beginning at the offset location specified with DINToffset. The values
are converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. LWORDval supports LWORD variable type.
Example:
MSB_LWORD_TO_ARRAY(TXBUFF, OFST, VLIN);

MSB_REAL_TO_ARRAY

Format:
MSB_REAL_TO_ARRAY(ArrayAnyType, DINToffset, REALval);
Description:
The MSB_REAL_TO_ARRAY function converts the REALval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. REALval supports REAL variable type.
Example:
MSB_REAL_TO_ARRAY(TXBUFF, OFST, VLIN);

MSB_UDINT_TO_ARRAY

Format:
MSB_UDINT_TO_ARRAY(ArrayAnyType, DINToffset, UDINTval);
Description:
The MSB_UDINT_TO_ARRAY function converts the UDINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. UDINTval supports UDINT variable type.
Example:
MSB_UDINT_TO_ARRAY(TXBUFF, OFST, VLIN);

MSB_UINT_TO_ARRAY

Format:
MSB_UINT_TO_ARRAY(ArrayAnyType, DINToffset, UINTval);
Description:
The MSB_UINT_TO_ARRAY function converts the UINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. UINTval supports UINT variable type.
Example:
MSB_UINT_TO_ARRAY(TXBUFF, OFST, VLIN);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 773

Function Name Function Details

MSB_ULINT_TO_ARRAY

Format:
MSB_ULINT_TO_ARRAY(ArrayAnyType, DINToffset, ULINTval);
Description:
The MSB_ULINT_TO_ARRAY function converts the ULINTval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. ULINTval supports ULINT variable type.
Example:
MSB_ULINT_TO_ARRAY(TXBUFF, OFST, VLIN);

MSB_WORD_TO_ARRAY

Format:
MSB_WORD_TO_ARRAY(ArrayAnyType, DINToffset, WORDval);
Description:
The MSB_WORD_TO_ARRAY function converts the WORDval and stores it into an array
(ArrayAnyType) beginning at the offset location specified with DINToffset. The values are
converted and stored into the array in MSB order.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type, DINToffset supports DINT
variable type. WORDval supports WORD variable type.
Example:
MSB_WORD_TO_ARRAY(TXBUFF, OFST, VLIN);

MUX

Format:
AnyNumOut := MUX(AnyIntSelect,AnyNumIn1, AnyNumIn2....AnyNumInX);
Description:
The MUX function acts as a selector based on the AnyIntSelect variable (passed in). This
value selects from the other passed in variables (AnyNumIn1, AnyNumIn2....AnyNumInX)
and returns the selected one and stores it in AnyNumOut.
Supported Variable Types:
AnyNumOut, AnyNumIn1, AnyNumIn2 and AnyNumInX supports variable types LREAL,
REAL, LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT. AnyIntSelect supports vari-
able types LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT.
Example:
 RTNABC:= MUX(K,V1,V2,V3);

REAL_TO_BYTE

Format:
AnyByte := REAL_TO_BYTE(REAL);
Description:
The REAL_TO_BYTE function converts the REAL (Passed in) value into a byte and
stores it in AnyByte.
Supported Variable Types:
REAL supports REAL variable type. AnyByte supports BYTE variable type.
Example:
XYZ := REAL_TO_BYTE(PBX);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 774

Function Name Function Details

REAL_TO_DINT

Format:
DINT := REAL_TO_DINT(REAL);
Description:
The REAL_TO_DINT function converts the REAL (Passed in) value into a double integer
and stores it in DINT.
Supported Variable Types:
REAL supports REAL variable type. DINT supports DINT variable type.
Example:
ABC := REAL_TO_DINT(PBX);

REAL_TO_DWORD

Format:
DWORD := REAL_TO_DWORD(REAL);
Description:
The REAL_TO_DWORD function converts the REAL (Passed in) value into a double
word and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type. REAL supports REAL variable type.
Example:
MNO := REAL_TO_DWORD(PBX);

REAL_TO_INT

Format:
INT := REAL_TO_INT(REAL);
Description:
The REAL_TO_INT function converts the REAL (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
REAL supports REAL variable type. INT supports INT variable type.
Example:
DEF := REAL_TO_INT(PBX);

REAL_TO_LINT

Format:
LINT := REAL_TO_LINT(REAL);
Description:
The REAL_TO_LINT function converts the REAL (Passed in) value into a long integer
and stores it in LINT.
Supported Variable Types:
REAL supports REAL variable type. LINT supports LINT variable type.
Example:
KLM := REAL_TO_LINT(PBX);

REAL_TO_LWORD

Format:
LWORD := REAL_TO_LWORD(REAL);
Description:
The REAL_TO_LWORD function converts the REAL (Passed in) value into a long word
and stores it in LWORD.
Supported Variable Types:
LWORD supports the LWORD variable type. REAL supports REAL variable type.
Example:
CDE := REAL_TO_LWORD(PBX);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 775

Function Name Function Details

REAL_TO_SINT

Format:
SINT := REAL_TO_SINT(REAL);
Description:
The REAL_TO_SINT function converts the REAL (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type. REAL supports REAL variable type.
Example:
RDS := REAL_TO_SINT(PBX);

REAL_TO_UDINT

Format:
UDINT := REAL_TO_UDINT(REAL);
Description:
The REAL_TO_UDINT function converts the REAL (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type. REAL supports REAL variable type.
Example:
BXD := REAL_TO_UDINT(PBX);

REAL_TO_UINT

Format:
UINT := REAL_TO_UINT(REAL);
Description:
The REAL_TO_UINT function converts the REAL (Passed in) value into an unsigned
integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, REAL supports REAL variable type.
Example:
RSA := REAL_TO_UINT(PBX);

REAL_TO_ULINT

Format:
ULINT := REAL_TO_ULINT(REAL);
Description:
The REAL_TO_ULINT function converts the REAL (Passed in) value into an unsigned
long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, REAL supports REAL variable type.
Example:
CBA := REAL_TO_ULINT(PBX);

REAL_TO_USINT

Format:
USINT := REAL_TO_USINT(REAL);
Description:
The REAL_TO_USINT function converts the REAL (Passed in) value into an unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, REAL supports REAL variable type.
Example:
DGA := REAL_TO_USINT(PBX);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 776

Function Name Function Details

REAL_TO_WORD

Format:
WORD := REAL_TO_WORD(REAL);
Description:
The REAL_TO_WORD function converts the REAL (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, REAL supports REAL variable type.
Example:
LKT := REAL_TO_WORD(PBX);

REPLACE

Format:
STRINGout := REPLACE(AnyStringIN1, AnyStringIN2, AnyIntLgth, AnyIntPos);
Description:
The REPLACE function replaces characters of the AnyStringIN1 string with the Any-
StringIN2 ; replacing the number of characters (length) in AnyStringIN1 specified in
AnyIntLgth, starting at AnyIntPos character of the string. The returned string is stored in
STRINGout. STRINGout must be large enough to handle the combined string. Addition-
ally, the length and position must be within range for a replace to occur or the result
returned will be the original AnyStringIN1 string.
Supported Variable Types:
STRINGout, AnyStringIN1 and AnyStringIN2 supports STRING variable type. AnyIntLgth
and AnyIntPos supports LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable
types.
Example:
STRRSLT := REPLACE(STR1, STR2 ,A, B);

RIGHT

Format:
STRINGout := RIGHT(AnyStringIN, AnyInt);
Description:
The RIGHT function returns the right most AnyInt number of characters of AnyStringIN
and stores them in STRINGout.
Supported Variable Types:
STRINGout and AnyStringIN supports STRING variable type. AnyInt supports LINT,
DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable types.
Example:
STRRSLT := RIGHT(STR1, ABC);

ROL

Format:
AnyBitOut := ROL(AnyBitIn, AnyInt);
Description:
The ROL function left-rotates the AnyBitIn by AnyInt bits (Circular). The result is stored in
AnyBitOut.
Supported Variable Types:
AnyBitIn and AnyBitOut supports LWORD, DWORD, WORD, BYTE and BOOL vari-
able types. AnyInt supports LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable
types.
Example:
LKT := ROL(QRS, ABC);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 777

Function Name Function Details

ROR

Format:
AnyBitOut := ROR(AnyBitIn, AnyInt);
Description:
The ROR function right-rotates the AnyBitIn by AnyInt bits (Circular). The result is stored
in AnyBitOut.
Supported Variable Types:
AnyBitIn and AnyBitOut support LWORD, DWORD, WORD, BYTE and BOOL variable
types. AnyInt supports LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable
types.
Example:
LKT := ROR(QRS, ABC);

SEL

Format:
AnyVarOut := SEL(BOOLSelect, AnyVarIn1, AnyVarIn2);
Description:
The SEL selects and returns the selection between AnyVarIn1 and AnyVarIn2. When
sel is 0 (false), then AnyVarOut equals AnyVarIn1. When sel is 1 (true), then AnyVarOut
equals AnyVarIn2.
Supported Variable Types:
AnyVarOut, AnyVarIn1 and AnyVarIn2 support all variable types. BOOLSelect support
BOOL variable type.
Example:
PBX := SEL(A, QRS, TUV);

SHL

Format:
AnyBitOut := SHL(AnyBitIn, AnyInt);
Description:
The SHL function left-shifts the AnyBitIn by AnyInt bits (and fills zero on the right). The
result is stored in AnyBitOut.
Supported Variable Types:
AnyBitIn and AnyBitOut supports LWORD, DWORD, WORD, BYTE and BOOL vari-
able types. AnyInt supports LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable
types.
Example:
LKT := SHL(QRS, ABC);

SHR

Format:
AnyBitOut := SHR(AnyBitIn, AnyInt);
Description:
The SHR function right-shifts the AnyBitIn by AnyInt bits (and fills zero on the left). The
result is stored in AnyBitOut.
Supported Variable Types:
AnyBitIn and AnyBitOut supports LWORD, DWORD, WORD, BYTE and BOOL vari-
able types. AnyInt supports LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT variable
types.
Example:
LKT := SHR(QRS, ABC);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 778

Function Name Function Details

SIN

Format:
SINReal := SIN(AnyReal);
Description:
The SIN function returns the Sine as SINReal of the provided (passed in) AnyReal value.
Supported Variable Types:
SINReal and AnyReal supports variable types LREAL, REAL
Example:
TMY:= SIN(PB);

SINT_TO_BYTE

Format:
AnyByte := SINT_TO_BYTE(SINT);
Description:
The SINT_TO_BYTE function converts the SINT (Passed in) value into a byte and stores
it in AnyByte.
Supported Variable Types:
SINT supports SINT variable type, AnyByte supports BYTE variable type.
Example:
XYZ := SINT_TO_BYTE(RDS);

SINT_TO_DINT

Format:
DINT := SINT_TO_DINT(SINT);
Description:
The SINT_TO_DINT function converts the SINT (Passed in) value into a double integer
and stores it in DINT.
Supported Variable Types:
SINT supports SINT variable type, DINT supports DINT variable type.
Example:
ABC := SINT_TO_DINT(RDS);

SINT_TO_DWORD

Format:
DWORD := SINT_TO_DWORD(SINT);
Description:
The SINT_TO_DWORD function converts the SINT (Passed in) value into a double word
and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type, SINT supports SINT variable type.
Example:
MNO := SINT_TO_DWORD(RDS);

SINT_TO_INT

Format:
INT := SINT_TO_INT(SINT);
Description:
The SINT_TO_INT function converts the SINT (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
INT supports INT variable type, SINT supports SINT variable type.
Example:
DEF := SINT_TO_INT(RDS);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 779

Function Name Function Details

SINT_TO_LINT

Format:
LINT := SINT_TO_LINT(SINT);
Description:
The SINT_TO_LINT function converts the SINT (Passed in) value into a long integer and
stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, SINT supports SINT variable type.
Example:
KLM := SINT_TO_LINT(RDS);

SINT_TO_LREAL

Format:
LREAL := SINT_TO_LREAL(SINT);
Description:
The SINT_TO_LREAL function converts the SINT (Passed in) value into a long real and
stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, SINT supports SINT variable type.
Example:
GHI := SINT_TO_LREAL(RDS);

SINT_TO_LWORD

Format:
LWORD := SINT_TO_LWORD(SINT);
Description:
The SINT_TO_LWORD function converts the SINT (Passed in) value into a long word
and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, SINT supports SINT variable type.
Example:
CDE := SINT_TO_LWORD(RDS);

SINT_TO_REAL

Format:
REAL := SINT_TO_REAL(SINT);
Description:
The SINT_TO_REAL function converts the SINT (Passed in) value into a real and stores
it in REAL.
Supported Variable Types:
REAL supports REAL variable type, SINT supports SINT variable type.
Example:
PBX := SINT_TO_REAL(RDS);

SINT_TO_UDINT

Format:
UDINT := SINT_TO_UDINT(SINT);
Description:
The SINT_TO_UDINT function converts the SINT (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, SINT supports SINT variable type.
Example:
BXD := SINT_TO_UDINT(RDS);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 780

Function Name Function Details

SINT_TO_UINT

Format:
UINT := SINT_TO_UINT(SINT);
Description:
The SINT_TO_UINT function converts the SINT (Passed in) value into an unsigned inte-
ger and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, SINT supports SINT variable type.
Example:
RSA := SINT_TO_UINT(RDS);

SINT_TO_ULINT

Format:
ULINT := SINT_TO_ULINT(SINT);
Description:
The SINT_TO_ULINT function converts the SINT (Passed in) value into an unsigned long
integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, SINT supports SINT variable type.
Example:
CBA := SINT_TO_ULINT(RDS);

SINT_TO_USINT

Format:
USINT := SINT_TO_USINT(SINT);
Description:
The SINT_TO_USINT function converts the SINT (Passed in) value into an unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, SINT supports SINT variable type.
Example:
DGA := SINT_TO_USINT(RDS);

SINT_TO_WORD

Format:
WORD := SINT_TO_WORD(SINT);
Description:
The SINT_TO_WORD function converts the SINT (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, SINT supports SINT variable type.
Example:
LKT := SINT_TO_WORD(RDS);

SQRT

Format:
SQReal := SQRT(AnyReal);
Description:
The SQRT function returns the Square Root as SQReal of the provided (passed in)
AnyReal value.
Supported Variable Types:
SQReal and AnyReal supports variable types LREAL, REAL
Example:
TMY:= SQRT(PB);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 781

Function Name Function Details

TAN

Format:
SQReal := SQRT(AnyReal);
Description:
The SQRT function returns the Square Root as SQReal of the provided (passed in)
AnyReal value.
Supported Variable Types:
SQReal and AnyReal supports variable types LREAL, REAL
Example:
TMY:= SQRT(PB);

TO_LSB_DINT

Format:
DINT := TO_LSB_DINT(ArrayAnyType, DINToffset);
Description:
The TO_LSB_DINT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a double integer (DINT) The
values are converted in LSB order and stored into DINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINT and DINToffset sup-
ports DINT variable type.
Example:
ABC:=TO_LSB_DINT(TXBUFF, OFST);

TO_LSB_DWORD

Format:
DWORD := TO_LSB_DWORD(ArrayAnyType, DINToffset);
Description:
The TO_LSB_DWORD function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a double word (DWORD) The
values are converted in LSB order and stored into DWORD.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. DWORD supports DWORD variable type.
Example:
MNO:=TO_LSB_DWORD(TXBUFF, OFST);

TO_LSB_INT

Format:
INT := TO_LSB_INT(ArrayAnyType, DINToffset);
Description:
The TO_LSB_INT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into an integer (INT) The values are
converted in LSB order and stored into INT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. INT supports INT variable type.
Example:
DEF:=TO_LSB_INT(TXBUFF, OFST);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 782

Function Name Function Details

TO_LSB_LINT

Format:
LINT := TO_LSB_LINT(ArrayAnyType, DINToffset);
Description:
The TO_LSB_LINT function converts the ArrayAnyType (Passed in), beginning at the off-
set location specified with DINToffset and stores it into a long integer (LINT) The values
are converted in LSB order and stored into LINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. LINT supports LINT variable type.
Example:
KLM:=TO_LSB_LINT(TXBUFF, OFST);

TO_LSB_LREAL

Format:
LREAL := TO_LSB_LREAL(ArrayAnyType, DINToffset);
Description:
The TO_LSB_LREAL function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a long real (LREAL) The values
are converted in LSB order and stored into LREAL.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. LREAL supports LREAL variable type.
Example:
GHI:=TO_LSB_LREAL(TXBUFF, OFST);

TO_LSB_LWORD

Format:
LWORD := TO_LSB_LWORD(ArrayAnyType, DINToffset);
Description:
The TO_LSB_LWORD function converts the ArrayAnyType (Passed in), beginning at
the offset location specified with DINToffset and stores it into a long word (LWORD) The
values are converted in LSB order and stored into LWORD.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. LWORD supports LWORD variable type.
Example:
CDE:=TO_LSB_LWORD(TXBUFF, OFST);

TO_LSB_REAL

Format:
REAL := TO_LSB_REAL(ArrayAnyType, DINToffset);
Description:
The TO_LSB_REAL function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a real (REAL) The values are
converted in LSB order and stored into REAL.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. REAL supports REAL variable type.
Example:
PBX:=TO_LSB_REAL(TXBUFF, OFST);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 783

Function Name Function Details

TO_LSB_UDINT

Format:
UDINT := TO_LSB_UDINT(ArrayAnyType, DINToffset);
Description:
The TO_LSB_UDINT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into an unsigned double integer
(UDINT) The values are converted in LSB order and stored into UDINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. UDINT supports UDINT variable type.
Example:
BXD:=TO_LSB_UDINT(TXBUFF, OFST);

TO_LSB_UINT

Format:
UINT := TO_LSB_UINT(ArrayAnyType, DINToffset);
Description:
The TO_LSB_UINT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into an unsigned integer (UINT) The
values are converted in LSB order and stored into UINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. UINT supports UINT variable type.
Example:
RSA:=TO_LSB_UINT(TXBUFF, OFST);

TO_LSB_ULINT

Format:
ULINT := TO_LSB_ULINT(ArrayAnyType, DINToffset);
Description:
The TO_LSB_ULINT function converts the ArrayAnyType (Passed in), beginning at
the offset location specified with DINToffset and stores it into an unsigned long integer
(ULINT) The values are converted in LSB order and stored into ULINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. ULINT supports ULINT variable type.
Example:
CBA:=TO_LSB_ULINT(TXBUFF, OFST);

TO_LSB_WORD

Format:
WORD := TO_LSB_WORD(ArrayAnyType, DINToffset);
Description:
The TO_LSB_WORD function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a word (WORD) The values are
converted in LSB order and stored into WORD.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. WORD supports WORD variable type.
Example:
LKT:=TO_LSB_WORD(TXBUFF, OFST);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 784

Function Name Function Details

TO_MSB_DINT

Format:
DINT := TO_MSB_DINT(ArrayAnyType, DINToffset);
Description:
The TO_MSB_DINT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a double integer (DINT) The
values are converted in MSB order and stored into DINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINT and DINToffset sup-
ports DINT variable type.
Example:
ABC:=TO_MSB_DINT(TXBUFF, OFST);

TO_MSB_DWORD

Format:
DWORD := TO_MSB_DWORD(ArrayAnyType, DINToffset);
Description:
The TO_MSB_DWORD function converts the ArrayAnyType (Passed in), beginning at
the offset location specified with DINToffset and stores it into a double word (DWORD)
The values are converted in MSB order and stored into DWORD.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. DWORD supports DWORD variable type.
Example:
MNO:=TO_MSB_DWORD(TXBUFF, OFST);

TO_MSB_INT

Format:
INT := TO_MSB_INT(ArrayAnyType, DINToffset);
Description:
The TO_MSB_INT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into an integer (INT) The values are
converted in MSB order and stored into INT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. INT supports INT variable type.
Example:
DEF:=TO_MSB_INT(TXBUFF, OFST);

TO_MSB_LINT

Format:
LINT := TO_MSB_LINT(ArrayAnyType, DINToffset);
Description:
The TO_MSB_LINT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a long integer (LINT) The val-
ues are converted in MSB order and stored into LINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. LINT supports LINT variable type.
Example:
KLM:=TO_MSB_LINT(TXBUFF, OFST);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 785

Function Name Function Details

TO_MSB_LREAL

Format:
LREAL := TO_MSB_LREAL(ArrayAnyType, DINToffset);
Description:
The TO_MSB_LREAL function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a long real (LREAL) The values
are converted in MSB order and stored into LREAL.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. LREAL supports LREAL variable type.
Example:
GHI:=TO_MSB_LREAL(TXBUFF, OFST);

TO_MSB_LWORD

Format:
LWORD := TO_MSB_LWORD(ArrayAnyType, DINToffset);
Description:
The TO_MSB_LWORD function converts the ArrayAnyType (Passed in), beginning at
the offset location specified with DINToffset and stores it into a long word (LWORD) The
values are converted in MSB order and stored into LWORD.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. LWORD supports LWORD variable type.
Example:
CDE:=TO_MSB_LWORD(TXBUFF, OFST);

TO_MSB_REAL

Format:
REAL := TO_MSB_REAL(ArrayAnyType, DINToffset);
Description:
The TO_MSB_REAL function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a real (REAL) The values are
converted in MSB order and stored into REAL.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. REAL supports REAL variable type.
Example:
PBX:=TO_MSB_REAL(TXBUFF, OFST);

TO_MSB_UDINT

Format:
UDINT := TO_MSB_UDINT(ArrayAnyType, DINToffset);
Description:
The TO_MSB_UDINT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into an unsigned double integer
(UDINT) The values are converted in MSB order and stored into UDINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. UDINT supports UDINT variable type.
Example:
BXD:=TO_MSB_UDINT(TXBUFF, OFST);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 786

Function Name Function Details

TO_MSB_UINT

Format:
UINT := TO_MSB_UINT(ArrayAnyType, DINToffset);
Description:
The TO_MSB_UINT function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into an unsigned integer (UINT) The
values are converted in MSB order and stored into UINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. UINT supports UINT variable type.
Example:
RSA:=TO_MSB_UINT(TXBUFF, OFST);

TO_MSB_ULINT

Format:
ULINT := TO_MSB_ULINT(ArrayAnyType, DINToffset);
Description:
The TO_MSB_ULINT function converts the ArrayAnyType (Passed in), beginning at
the offset location specified with DINToffset and stores it into an unsigned long integer
(ULINT) The values are converted in MSB order and stored into ULINT.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. ULINT supports ULINT variable type.
Example:
CBA:=TO_MSB_ULINT(TXBUFF, OFST);

TO_MSB_WORD

Format:
WORD := TO_MSB_WORD(ArrayAnyType, DINToffset);
Description:
The TO_MSB_WORD function converts the ArrayAnyType (Passed in), beginning at the
offset location specified with DINToffset and stores it into a word (WORD) The values are
converted in MSB order and stored into WORD.
Supported Variable Types:
ArrayAnyType supports an ARRAY[] OF of any variable type. DINToffset supports DINT
variable type. WORD supports WORD variable type.
Example:
LKT:=TO_MSB_WORD(TXBUFF, OFST);

TRUNC

Format:
AnyInt := TRUNC(AnyReal);
Description:
The TRUNC function truncates (removes the decimal point) of the AnyReal varibale
(Passed in) and returns (stores) the reult as AnyInt.
Supported Variable Types:
AnyReal supports variable types LREAL, REAL AnyInt supports LINT, DINT, INT, SINT,
ULINT, UDINT, UINT, USINT variable types.
Example:
ABC:= TRUNC(TMY);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 787

Function Name Function Details

UDINT_TO_BYTE

Format:
AnyByte := UDINT_TO_BYTE(UDINT);
Description:
The UDINT_TO_BYTE function converts the UDINT (Passed in) value into a byte and
stores it in AnyByte.
Supported Variable Types:
UDINT supports UDINT variable type, AnyByte supports BYTE variable type.
Example:
XYZ := UDINT_TO_BYTE(BXD);

UDINT_TO_DINT

Format:
DINT := UDINT_TO_DINT(UDINT);
Description:
The UDINT_TO_DINT function converts the UDINT (Passed in) value into a double inte-
ger and stores it in DINT.
Supported Variable Types:
UDINT supports UDINT variable type, DINT supports DINT variable type.
Example:
ABC := UDINT_TO_DINT(BXD);

UDINT_TO_DWORD

Format:
DWORD := UDINT_TO_DWORD(UDINT);
Description:
The UDINT_TO_DWORD function converts the UDINT (Passed in) value into a double
word and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type. UDINT supports UDINT variable type.
Example:
MNO := UDINT_TO_DWORD(BXD);

UDINT_TO_INT

Format:
INT := UDINT_TO_INT(UDINT);
Description:
The UDINT_TO_INT function converts the UDINT (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
INT supports INT variable type, UDINT supports UDINT variable type.
Example:
DEF := UDINT_TO_INT(BXD);

UDINT_TO_LINT

Format:
LINT := UDINT_TO_LINT(UDINT);
Description:
The UDINT_TO_LINT function converts the UDINT (Passed in) value into a long integer
and stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, UDINT supports UDINT variable type.
Example:
RSA := UDINT_TO_LINT(BXD);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 788

Function Name Function Details

UDINT_TO_LREAL

Format:
LREAL := UDINT_TO_LREAL(UDINT);
Description:
The UDINT_TO_LREAL function converts the UDINT (Passed in) value into a long real
and stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, UDINT supports UDINT variable type.
Example:
GHI := UDINT_TO_LREAL(BXD);

UDINT_TO_LWORD

Format:
LWORD := UDINT_TO_LWORD(UDINT);
Description:
The UDINT_TO_LWORD function converts the UDINT (Passed in) value into a long word
and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, UDINT supports UDINT variable type.
Example:
CDE := UDINT_TO_LWORD(BXD);

UDINT_TO_REAL

Format:
REAL := UDINT_TO_REAL(UDINT);
Description:
The UDINT_TO_REAL function converts the UDINT (Passed in) value into a real and
stores it in REAL.
Supported Variable Types:
REAL supports REAL variable type, UDINT supports UDINT variable type.
Example:
PBX := UDINT_TO_REAL(BXD);

UDINT_TO_SINT

Format:
SINT := UDINT_TO_SINT(UDINT);
Description:
The UDINT_TO_SINT function converts the UDINT (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type. UDINT supports UDINT variable type.
Example:
RDS := UDINT_TO_SINT(BXD);

UDINT_TO_UINT

Format:
UINT := UDINT_TO_UINT(UDINT);
Description:
The UDINT_TO_UINT function converts the UDINT (Passed in) value into an unsigned
integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, UDINT supports UDINT variable type.
Example:
RSA := UDINT_TO_UINT(BXD);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 789

Function Name Function Details

UDINT_TO_ULINT

Format:
ULINT := UDINT_TO_ULINT(UDINT);
Description:
The UDINT_TO_ULINT function converts the UDINT (Passed in) value into an unsigned
long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, UDINT supports UDINT variable type.
Example:
CBA := UDINT_TO_ULINT(BXD);

UDINT_TO_USINT

Format:
USINT := UDINT_TO_USINT(UDINT);
Description:
The UDINT_TO_USINT function converts the UDINT (Passed in) value into an unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, UDINT supports UDINT variable type.
Example:
DGA := UDINT_TO_USINT(BXD);

UDINT_TO_WORD

Format:
WORD := UDINT_TO_WORD(UDINT);
Description:
The UDINT_TO_WORD function converts the UDINT (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, UDINT supports UDINT variable type.
Example:
LKT := UDINT_TO_WORD(BXD);

UINT_TO_BYTE

Format:
AnyByte := UINT_TO_BYTE(UINT);
Description:
The UINT_TO_BYTE function converts the UINT (Passed in) value into a byte and stores
it in AnyByte.
Supported Variable Types:
UINT supports UINT variable type, AnyByte supports BYTE variable type.
Example:
XYZ := UINT_TO_BYTE(RSA);

UINT_TO_DINT

Format:
DINT := UINT_TO_DINT(UINT);
Description:
The UINT_TO_DINT function converts the UINT (Passed in) value into a double integer
and stores it in DINT.
Supported Variable Types:
UINT supports UINT variable type, DINT supports DINT variable type.
Example:
ABC := UINT_TO_DINT(RSA);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 790

Function Name Function Details

UINT_TO_DWORD

Format:
DWORD := UINT_TO_DWORD(UINT);
Description:
The UINT_TO_DWORD function converts the UINT (Passed in) value into a double word
and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type. UINT supports UINT variable type.
Example:
MNO := UINT_TO_DWORD(RSA);

UINT_TO_INT

Format:
INT := UINT_TO_INT(UINT);
Description:
The UINT_TO_INT function converts the UINT (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
INT supports INT variable type, UINT supports UINT variable type.
Example:
DEF := UINT_TO_INT(RSA);

UINT_TO_LINT

Format:
LINT := UINT_TO_LINT(UINT);
Description:
The UINT_TO_LINT function converts the UINT (Passed in) value into a long integer and
stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, UINT supports UINT variable type.
Example:
RSA := UINT_TO_LINT(RSA);

UINT_TO_LREAL

Format:
LREAL := UINT_TO_LREAL(UINT);
Description:
The UINT_TO_LREAL function converts the UINT (Passed in) value into a long real and
stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, UINT supports UINT variable type.
Example:
GHI := UINT_TO_LREAL(RSA);

UINT_TO_LWORD

Format:
LWORD := UINT_TO_LWORD(UINT);
Description:
The UINT_TO_LWORD function converts the UINT (Passed in) value into a long word
and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, UINT supports UINT variable type.
Example:
CDE := UINT_TO_LWORD(RSA);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 791

Function Name Function Details

UINT_TO_REAL

Format:
REAL := UINT_TO_REAL(UINT);
Description:
The UINT_TO_REAL function converts the UINT (Passed in) value into a real and stores
it in REAL.
Supported Variable Types:
REAL supports REAL variable type, UINT supports UINT variable type.
Example:
PBX := UINT_TO_REAL(RSA);

UINT_TO_SINT

Format:
SINT := UINT_TO_SINT(UINT);
Description:
The UINT_TO_SINT function converts the UINT (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type. UINT supports UINT variable type.
Example:
RDS := UINT_TO_SINT(RSA);

UINT_TO_UDINT

Format:
UDINT := UINT_TO_UDINT(UINT);
Description:
The UINT_TO_UDINT function converts the UINT (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, UINT supports UINT variable type.
Example:
BXD := UINT_TO_UDINT(RSA);

UINT_TO_ULINT

Format:
ULINT := UINT_TO_ULINT(UINT);
Description:
The UINT_TO_ULINT function converts the UINT (Passed in) value into an unsigned
long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, UINT supports UINT variable type.
Example:
CBA := UINT_TO_ULINT(RSA);

UINT_TO_USINT

Format:
USINT := UINT_TO_USINT(UINT);
Description:
The UINT_TO_USINT function converts the UINT (Passed in) value into an unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, UINT supports UINT variable type.
Example:
DGA := UINT_TO_USINT(RSA);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 792

Function Name Function Details

UINT_TO_WORD

Format:
WORD := UINT_TO_WORD(UINT);
Description:
The UINT_TO_WORD function converts the UINT (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, UINT supports UINT variable type.
Example:
LKT := UINT_TO_WORD(RSA);

ULINT_TO_BYTE

Format:
AnyByte := ULINT_TO_BYTE(ULINT);
Description:
The ULINT_TO_BYTE function converts the ULINT (Passed in) value into a byte and
stores it in AnyByte.
Supported Variable Types:
ULINT supports ULINT variable type, AnyByte supports BYTE variable type.
Example:
XYZ := ULINT_TO_BYTE(CBA);

ULINT_TO_DINT

Format:
DINT := ULINT_TO_DINT(ULINT);
Description:
The ULINT_TO_DINT function converts the ULINT (Passed in) value into a double inte-
ger and stores it in DINT.
Supported Variable Types:
ULINT supports ULINT variable type, DINT supports DINT variable type.
Example:
ABC := ULINT_TO_DINT(CBA);

ULINT_TO_DWORD

Format:
DWORD := ULINT_TO_DWORD(ULINT);
Description:
The ULINT_TO_DWORD function converts the ULINT (Passed in) value into a double
word and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type. ULINT supports ULINT variable type.
Example:
MNO := ULINT_TO_DWORD(CBA);

ULINT_TO_INT

Format:
INT := ULINT_TO_INT(ULINT);
Description:
The ULINT_TO_INT function converts the ULINT (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
INT supports INT variable type, ULINT supports ULINT variable type.
Example:
DEF := ULINT_TO_INT(CBA);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 793

Function Name Function Details

ULINT_TO_LINT

Format:
LINT := ULINT_TO_LINT(ULINT);
Description:
The ULINT_TO_LINT function converts the ULINT (Passed in) value into a long integer
and stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, ULINT supports ULINT variable type.
Example:
RSA := ULINT_TO_LINT(CBA);

ULINT_TO_LREAL

Format:
LREAL := ULINT_TO_LREAL(ULINT);
Description:
The ULINT_TO_LREAL function converts the ULINT (Passed in) value into a long real
and stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, ULINT supports ULINT variable type.
Example:
GHI := ULINT_TO_LREAL(CBA);

ULINT_TO_LWORD

Format:
LWORD := ULINT_TO_LWORD(ULINT);
Description:
The ULINT_TO_LWORD function converts the ULINT (Passed in) value into a long word
and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, ULINT supports ULINT variable type.
Example:
CDE := ULINT_TO_LWORD(CBA);

ULINT_TO_REAL

Format:
REAL := ULINT_TO_REAL(ULINT);
Description:
The ULINT_TO_REAL function converts the ULINT (Passed in) value into a real and
stores it in REAL.
Supported Variable Types:
REAL supports REAL variable type, ULINT supports ULINT variable type.
Example:
PBX := ULINT_TO_REAL(CBA);

ULINT_TO_SINT

Format:
SINT := ULINT_TO_SINT(ULINT);
Description:
The ULINT_TO_SINT function converts the ULINT (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type. ULINT supports ULINT variable type.
Example:
RDS := ULINT_TO_SINT(CBA);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 794

Function Name Function Details

ULINT_TO_UDINT

Format:
UDINT := ULINT_TO_UDINT(ULINT);
Description:
The ULINT_TO_UDINT function converts the ULINT (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, ULINT supports ULINT variable type.
Example:
BXD := ULINT_TO_UDINT(CBA);

ULINT_TO_UINT

Format:
UINT := ULINT_TO_UINT(ULINT);
Description:
The ULINT_TO_UINT function converts the ULINT (Passed in) value into an unsigned
integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, ULINT supports ULINT variable type.
Example:
RSA := ULINT_TO_UINT(CBA);

ULINT_TO_USINT

Format:
USINT := ULINT_TO_USINT(ULINT);
Description:
The ULINT_TO_USINT function converts the ULINT (Passed in) value into an unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, ULINT supports ULINT variable type.
Example:
DGA := ULINT_TO_USINT(CBA);

ULINT_TO_WORD

Format:
WORD := ULINT_TO_WORD(ULINT);
Description:
The ULINT_TO_WORD function converts the ULINT (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, ULINT supports ULINT variable type.
Example:
LKT := ULINT_TO_WORD(CBA);

USINT_TO_BYTE

Format:
AnyByte := USINT_TO_BYTE(USINT);
Description:
The USINT_TO_BYTE function converts the USINT (Passed in) value into a byte and
stores it in AnyByte.
Supported Variable Types:
USINT supports USINT variable type, AnyByte supports BYTE variable type.
Example:
XYZ := USINT_TO_BYTE(DGA);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 795

Function Name Function Details

USINT_TO_DINT

Format:
DINT := USINT_TO_DINT(USINT);
Description:
The USINT_TO_DINT function converts the USINT (Passed in) value into a double inte-
ger and stores it in DINT.
Supported Variable Types:
USINT supports USINT variable type, DINT supports DINT variable type.
Example:
ABC := USINT_TO_DINT(DGA);

USINT_TO_DWORD

Format:
DWORD := USINT_TO_DWORD(USINT);
Description:
The USINT_TO_DWORD function converts the USINT (Passed in) value into a double
word and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type. USINT supports USINT variable type.
Example:
MNO := USINT_TO_DWORD(DGA);

USINT_TO_INT

Format:
INT := USINT_TO_INT(USINT);
Description:
The USINT_TO_INT function converts the USINT (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
INT supports INT variable type, USINT supports USINT variable type.
Example:
DEF := USINT_TO_INT(DGA);

USINT_TO_LINT

Format:
LINT := USINT_TO_LINT(USINT);
Description:
The USINT_TO_LINT function converts the USINT (Passed in) value into a long integer
and stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, USINT supports USINT variable type.
Example:
RSA := USINT_TO_LINT(DGA);

USINT_TO_LREAL

Format:
LREAL := USINT_TO_LREAL(USINT);
Description:
The USINT_TO_LREAL function converts the USINT (Passed in) value into a long real
and stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, USINT supports USINT variable type.
Example:
GHI := USINT_TO_LREAL(DGA);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 796

Function Name Function Details

USINT_TO_LWORD

Format:
LWORD := USINT_TO_LWORD(USINT);
Description:
The USINT_TO_LWORD function converts the USINT (Passed in) value into a long word
and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, USINT supports USINT variable type.
Example:
CDE := USINT_TO_LWORD(DGA);

USINT_TO_REAL

Format:
REAL := USINT_TO_REAL(USINT);
Description:
The USINT_TO_REAL function converts the USINT (Passed in) value into a real and
stores it in REAL.
Supported Variable Types:
REAL supports REAL variable type, USINT supports USINT variable type.
Example:
PBX := USINT_TO_REAL(DGA);

USINT_TO_SINT

Format:
SINT := USINT_TO_SINT(USINT);
Description:
The USINT_TO_SINT function converts the USINT (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type. USINT supports USINT variable type.
Example:
RDS := USINT_TO_SINT(DGA);

USINT_TO_UDINT

Format:
UDINT := USINT_TO_UDINT(USINT);
Description:
The USINT_TO_UDINT function converts the USINT (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, USINT supports USINT variable type.
Example:
BXD := USINT_TO_UDINT(DGA);

USINT_TO_UINT

Format:
UINT := USINT_TO_UINT(USINT);
Description:
The USINT_TO_UINT function converts the USINT (Passed in) value into an unsigned
integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, USINT supports USINT variable type.
Example:
RSA := USINT_TO_UINT(DGA);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 797

Function Name Function Details

USINT_TO_ULINT

Format:
ULINT := USINT_TO_ULINT(USINT);
Description:
The USINT_TO_ULINT function converts the USINT (Passed in) value into an unsigned
long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, USINT supports USNT variable type.
Example:
CBA := USINT_TO_ULINT(DGA);

USINT_TO_WORD

Format:
WORD := USINT_TO_WORD(USINT);
Description:
The USINT_TO_WORD function converts the USINT (Passed in) value into a word and
stores it in WORD.
Supported Variable Types:
WORD supports WORD variable type, USINT supports USINT variable type.
Example:
LKT := USINT_TO_WORD(DGA);

WORD_TO_BYTE

Format:
AnyByte := WORD_TO_BYTE(WORD);
Description:
The WORD_TO_BYTE function converts the WORD (Passed in) value into a byte and
stores it in AnyByte.
Supported Variable Types:
WORD supports WORD variable type, AnyByte supports BYTE variable type.
Example:
XYZ := WORD_TO_BYTE(LKT);

WORD_TO_DINT

Format:
DINT := WORD_TO_DINT(WORD);
Description:
The WORD_TO_DINT function converts the WORD (Passed in) value into a double
integer and stores it in DINT.
Supported Variable Types:
WORD supports WORD variable type, DINT supports DINT variable type.
Example:
ABC := WORD_TO_DINT(LKT);

WORD_TO_DWORD

Format:
DWORD := WORD_TO_DWORD(WORD);
Description:
The WORD_TO_DWORD function converts the WORD (Passed in) value into a double
word and stores it in DWORD.
Supported Variable Types:
DWORD supports DWORD variable type. WORD supports WORD variable type.
Example:
MNO := WORD_TO_DWORD(LKT);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 798

Function Name Function Details

WORD_TO_INT

Format:
INT := WORD_TO_INT(WORD);
Description:
The WORD_TO_INT function converts the WORD (Passed in) value into an integer and
stores it in INT.
Supported Variable Types:
INT supports INT variable type, WORD supports WORD variable type.
Example:
DEF := WORD_TO_INT(LKT);

WORD_TO_LINT

Format:
LINT := WORD_TO_LINT(WORD);
Description:
The WORD_TO_LINT function converts the WORD (Passed in) value into a long integer
and stores it in LINT.
Supported Variable Types:
LINT supports LINT variable type, WORD supports WORD variable type.
Example:
RSA := WORD_TO_LINT(LKT);

WORD_TO_LREAL

Format:
LREAL := WORD_TO_LREAL(WORD);
Description:
The WORD_TO_LREAL function converts the WORD (Passed in) value into a long real
and stores it in LREAL.
Supported Variable Types:
LREAL supports LREAL variable type, WORD supports WORD variable type.
Example:
GHI := WORD_TO_LREAL(LKT);

WORD_TO_LWORD

Format:
LWORD := WORD_TO_LWORD(WORD);
Description:
The WORD_TO_LWORD function converts the WORD (Passed in) value into a long
word and stores it in LWORD.
Supported Variable Types:
LWORD supports LWORD variable type, WORD supports WORD variable type.
Example:
CDE := WORD_TO_LWORD(LKT);

WORD_TO_REAL

Format:
REAL := WORD_TO_REAL(WORD);
Description:
The WORD_TO_REAL function converts the WORD (Passed in) value into a real and
stores it in REAL.
Supported Variable Types:
REAL supports REAL variable type, WORD supports WORD variable type.
Example:
PBX := WORD_TO_REAL(LKT);

Appendix C Standard ST Function Reference

Divelbiss Corporation - P-Series EZ LADDER Toolkit User Manual 799

Function Name Function Details

WORD_TO_SINT

Format:
SINT := WORD_TO_SINT(WORD);
Description:
The WORD_TO_SINT function converts the WORD (Passed in) value into a short integer
and stores it in SINT.
Supported Variable Types:
SINT supports SINT variable type. WORD supports WORD variable type.
Example:
RDS := WORD_TO_SINT(LKT);

WORD_TO_UDINT

Format:
UDINT := WORD_TO_UDINT(WORD);
Description:
The WORD_TO_UDINT function converts the WORD (Passed in) value into an unsigned
double integer and stores it in UDINT.
Supported Variable Types:
UDINT supports UDINT variable type, WORD supports WORD variable type.
Example:
BXD := WORD_TO_UDINT(LKT);

WORD_TO_UINT

Format:
UINT := WORD_TO_UINT(WORD);
Description:
The WORD_TO_UINT function converts the WORD (Passed in) value into an unsigned
integer and stores it in UINT.
Supported Variable Types:
UINT supports UINT variable type, WORD supports WORD variable type.
Example:
RSA := WORD_TO_UINT(LKT);

WORD_TO_ULINT

Format:
ULINT := WORD_TO_ULINT(WORD);
Description:
The WORD_TO_ULINT function converts the WORD (Passed in) value into an unsigned
long integer and stores it in ULINT.
Supported Variable Types:
ULINT supports ULINT variable type, WORD supports WORD variable type.
Example:
CBA := WORD_TO_ULINT(LKT);

WORD_TO_USINT

Format:
USINT := WORD_TO_USINT(WORD);
Description:
The WORD_TO_USINT function converts the WORD (Passed in) value into an unsigned
short integer and stores it in USINT.
Supported Variable Types:
USINT supports USINT variable type, WORD supports WORD variable type.
Example:
DGA := WORD_TO_USINT(LKT);

DIVELBISS
SOFTWARE LICENSE AGREEMENT

This Software License Agreement (the “Agreement”) sets forth the terms by which Divelbiss Corporation, an Ohio corporation hav-
ing a principal place of business at 9778 Mt. Gilead Road, Fredericktown, Ohio (“Divelbiss”), authorizes its bona fide licensees who
have paid all applicable fees and accepted the terms of this Agreement (each a “Licensee”) to use the Licensed Software (as defined
below) provided herewith. Installing, using or attempting to install or use such Licensed Software or otherwise expressing assent to
the terms herein constitutes acceptance of this Agreement. Any installation, use or attempted installation or use of such Licensed
Software by any party other than a Licensee or otherwise in violation of this Agreement is expressly prohibited.

Introduction
Whereas Divelbiss has developed certain modules of computer software known as “PLC ON A CHIP Kernel” and “EZ LADDER
Toolkit”; and Licensee wishes to secure certain rights to use such software ; and Divelbiss is prepared to license such rights, subject
to the terms and conditions of this Agreement; therefore, in consideration of the mutual covenants contained herein and intending to
be legally bound hereby, Divelbiss and Licensee agree as follows:

1. Licensed Software

The PLC ON A CHIP Kernel and EZ LADDER Toolkit software, whether in source code or object code format, and all related docu-
mentation and revisions, updates and modifications thereto (collectively, “Licensed Software”), is licensed by Divelbiss to Licensee
strictly subject to the terms of this Agreement.

2. License Grant

Divelbiss hereby grants to Licensee a non exclusive, non-transferable license to use the Licensed Software as follows.

 (a) Except as otherwise provided herein, one (1) user may install and use on one (1) desktop personal computer and
 on one (1) portable personal computer the EZ LADDER Toolkit (i) to develop, test, install, configure and distribute
 certain applications on certain hardware devices such as programmable logic controllers (each a “Resulting
 Product”), and (ii) to configure the PLC ON A CHIP Kernel on designated processors, which shall constitute
 Resulting Products.

 (b) Licensee may copy the EZ LADDER Toolkit only for backup purposes.

 (c) Licensee may not amend, modify, decompile, reverse engineer, copy (except as expressly authorized in
 Section 2 of this Agreement), install on a network, or permit use by more than a single user, in whole or in part, the
 Licensed Software, or sublicense, convey or purport to convey any such right to any third party.

 (d) Licensee, Licensee’s customers and others who obtain Resulting Products are expressly prohibited from using, in
 whole or in part, the Licensed Software and any Resulting Product, in any use or application (i) intended to sustain
 or support life; (ii) for surgical implant; (iii) related to the operation of nuclear facilities; (iv) in which malfunction or
 failure could result in death or personal injury; or (v) in environments otherwise intended to be fault-tolerant.

3. License Fee

 (a) Except when Licensee obtains the EZ LADDER Toolkit from an approved distributor or OEM pursuant to other fee
 arrangements, Licensee will pay to Divelbiss the license fee for the EZ LADDER Toolkit specified in the applicable
 Divelbiss price list, which is due and payable upon delivery of same.

 (b) If Licensee fails to make any payment when due, Divelbiss may, at its sole option, terminate Licensee’s rights
 under this Agreement to use the Licensed Software. If Licensee fails to pay any balance within thirty (30) days after
 being notified by Divelbiss that payment is overdue, Divelbiss may take whatever steps it deems necessary to
 collect the balance, including referring the matter to an agency and/or suing for collection. All expenses and fees
 associated with the collection of an overdue balance, including costs and fees of collection and attorney’s fees,
 shall be paid by Licensee. Overdue balances are subject to a monthly finance charge equal to the greater of [1.5]%
 or the maximum interest rate permitted by law times the unpaid balance.

4. Reporting

 (a) Upon request of Divelbiss, Licensee will provide a written report each quarter showing the number of Resulting
 Products produced, distributed or sold by Licensee during the previous calendar quarter, the parties (identified by
 name, address, etc.) to which they were distributed or sold, and the revenue received therefor.

 (b) Divelbiss shall be entitled to commission or to conduct an audit of Licensee’s books and records twice per year in

 order to verify the accuracy of reports regarding resulting Products made by Licensee to Divelbiss. Such audit
 shall be conducted during regular business hours at Licensee’s facilities, and Licensee shall cooperate fully with in
 connection with such audit, making all facilities, records and personnel available upon request by Divelbiss or its
 representative.

5. Divelbiss Warranties

 (a) Divelbiss represents and warrants that (i) it is the owner of the Licensed Software, and (ii) this Agreement violates
 no previous agreement between Divelbiss and any third party.

 (b) Divelbiss further warrants that for a period of 90 days from the date this Agreement is accepted by Licensee, the
 EZ LADDER Toolkit will perform substantially in accordance with the accompanying documentation provided by
 Divelbiss, provided that the EZ LADDER Toolkit (i) has not been modified, (ii) has been maintained according to all
 applicable maintenance recommendations, (iii) has not been used with hardware or software or installed or
 operated in a manner inconsistent with any manuals or relevant system requirements provided by Divelbiss, and
 (iv) has not been subjected to abuse, negligence or other improper treatment, including, without limitation, use
 outside the operating environment or range of applications prescribed in any manuals or relevant system
 requirements provided by Divelbiss by Divelbiss. Provided that Licensee gives prompt written notice to Divelbiss
 of any alleged breach of the foregoing warranty and that such alleged breach can be reproduced by Divelbiss,
 Divelbiss will use commercially reasonable efforts to repair or replace the EZ LADDER Toolkit so that it performs
 as warranted, or , at its sole option, refund to Licensee a prorated share of the license fee paid by Licensee
 for the portion of the EZ LADDER Toolkit which caused the alleged breach of warranty. Licensee acknowledges
 that the foregoing represents Divelbiss’s sole obligation and Licensee’s sole remedy for any alleged breach of
 warranty regardingthe EZ LADDER Toolkit.

 (c) Divelbiss expressly disclaims any and all warranties concerning any Resulting Products and any applications
 developed, tested, installed or distributed by Licensee using the Licensed Software, and Licensee expressly ac
 knowledges that it is solely responsible for any and all Resulting Products and applications developed, tested,
 installed or distributed using the Licensed Software, and for any and all claims, damages, settlements, expenses
 and attorney’s fees arising from the distribution or use of the PLC ON A CHIP Kernel or Resulting Products by
 Licensee, Licensee’s customers or others.

 (d) DIVELBISS MAKES NO OTHER WARRANTIES OF ANY KIND WITH RESPECT TO THE LICENSED
 SOFTWARE OR THIS AGREEMENT, AND EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 PARTICULAR PURPOSE AND NON-INFRINGEMENT.

6. Licensee Warranties

 Licensee represents, warrants and covenants that:

 (a) Licensee has all necessary authority to enter into and to fulfill its obligations under this Agreement;

 (b) Licensee will comply with all federal, state and local laws and regulations applicable to the use or disposition of the
 Licensed Software, including without, limitation all export laws and regulations;

 (c) Licensee shall be solely liable for all Resulting Products, any and all warranties on Resulting Products shall be
 made only by and on behalf of Licensee, and Licensee shall make NO representations or warranties on behalf of
 Divelbiss.

 (d) For the term of this Agreement and any renewal thereof, and for one (1) year thereafter, Licensee will not solicit or
 hire any of Divelbiss’s employees.

7. Limitation of Liability

 LICENSEE ACKNOWLEDGES AND AGREES THAT NEITHER DIVELBISS NOR ITS SUPPLIERS, EMPLOYEES OR
 AFFILIATES WILL BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS OR GOODWILL, LOSS OF DATA
 OR USE OF DATA, INTERRUPTION OF BUSINESS, NOR FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
 CONSEQUENTIAL DAMAGES OF ANY KIND UNDER, ARISING OUT OF, OR RELATED TO THE SUBJECT MATTER OF
 THIS AGREEMENT (SPECIFICALLY INCLUDING ANY LOSS TO OR DAMAGES OF LICENSEE’S CUSTOMERS, OF
 ANY SORT WHATSOEVER), HOWEVER CAUSED, WHETHER ANY SUCH CLAIM SOUNDS IN CONTRACT, TORT,
 STRICT LIABILITY OR OTHER LEGAL OR EQUITABLE THEORY, EVEN IF DIVELBISS HAS BEEN ADVISED OF THE
 POSSIBILITY OF SUCH LOSS. IN NO EVENT WILL DIVELBISS’S LIABILITY UNDER, ARISING OUT OF OR RELATED
 TO THE SUBJECT MATTER OF THIS AGREEMENT EXCEED THE AMOUNT RECEIVED BY DIVELBISS FROM
 LICENSEE UNDER THIS AGREEMENT DURING THE NINETY (90) DAY PERIOD PRECEDING THE EVENT GIVING

 RISE TO SUCH LIABILITY, OR THE AMOUNT OF A SINGLE-USER LICENSE FEE FOR THE EZ LADDER TOOLKIT,
 WHICHEVER IS GREATER.

8. Indemnification

 (a) Subject to the limitations of Section 7 of this Agreement, Divelbiss will indemnify Licensee from and against liability
 for any judgment finally awarded by a court of competent jurisdiction against Licensee based upon a claim that the
 EZ LADDER Toolkit infringes any current U.S. patent or copyright of a third party, provided that Divelbiss is
 promptly notified of any such threats, claims or proceedings, afforded the opportunity to intervene in any such
 proceeding and given sole control over the defense of such claim, including all negotiations of any prospective
 settlement or compromise, and that Licensee gives all cooperation and assistance requested by Divelbiss in
 connection with same; and provided further that the foregoing obligation of Divelbiss does not apply with respect to
 any Resulting Products or any hardware, software (including the Licensed Software) or components thereof (i) not
 supplied by Divelbiss, (ii) made or modified in whole or in part by Licensee or according to Licensee’s
 specifications, (iii) otherwise modified after delivery, (iv) combined with other hardware, software, products or
 processes by Licensee (including in creating Resulting Products) where such claim could have been avoided
 absent such combination, (v) insofar as Licensee continues allegedly infringing activity after being notified thereof
 or informed of steps or modifications that would have avoided the alleged infringement, or (vi) used by Licensee in
 violation of the terms of this Agreement.

 (b) Licensee will defend, indemnify and hold Divelbiss harmless from and against any and all losses, liabilities,
 judgments, damages and claims against Divelbiss obtained or asserted by any third party (including any allegation
 of infringement or violation of proprietary rights), and all related costs, including attorney fees, incurred by
 Divelbiss, arising or resulting from or related to i) Licensee’s use, modification or adaptation of the Licensed
 Software, including to create any application or any Resulting Product, ii) the operation or performance, or
 Licensee’s or any third party’s use, of any Resulting Product, iii) any breach by Licensee of any representation or
 warranty made by Licensee related to the Licensed Software or any Resulting Product, or iv) any breach by
 Licensee of any of its obligations under this Agreement.

 (c) In the event that any claim of infringement under Section 8(a) above is, or in Divelbiss’s sole judgment is likely to
 be, substantiated, Divelbiss may, at its sole discretion, use commercially reasonable efforts to i) obtain a license
 from the third party for Licensee to continue using the allegedly infringing feature or aspect of the EZ LADDER
 Toolkit; ii) replace or modify the allegedly infringing feature or aspect of the EZ LADDER Toolkit to avoid such
 infringement; or iii) terminate this Agreement and the license hereunder and refund a prorated portion of the initial
 license fee paid by Licensee for the allegedly infringing feature or aspect of the EZ LADDER Toolkit .

9. Modification of Licensed Software

 (a) Divelbiss may, from time to time, at its sole discretion and without further notice to Licensee, make, and at its
 further discretion distribute to Licensee, modifications to the Licensed Software. In the event that Licensee fails
 to install such a modification when so advised by Divelbiss, Divelbiss shall be relieved of any obligation pursuant
 to the limited warranty set forth in Section 5 hereof. Should Licensee request modifications to the Licensed
 Software, Divelbiss may charge for and make such changes subject to the terms of a separate agreement
 between the parties.

 (b) Licensee may not modify the Licensed Software or engage any third party to modify the Licensed Software without
 the express, written consent of Divelbiss. Any and all modifications made to the Licensed Software, whether by
 Licensee or any third party, and all rights therein are hereby assigned to and shall be the sole and exclusive
 property of Divelbiss.

10. Ownership of Licensed Software

 (a) Licensee acknowledges that, subject only to the license specifically granted herein, all right, title, and interest in
 and to the Licensed Software, all revisions and copies thereof provided to or created by Licensee and all
 modifications thereof, by whomever made, are and shall remain the sole and exclusive property of Divelbiss.

 (b) LICENSEE ACKNOWLEDGES THAT VARIOUS ASPECTS AND FEATURES OF THE LICENSED SOFTWARE
 MAY BE PROTECTED UNDER APPLICABLE PATENT, COPYRIGHT, TRADEMARK AND TRADE SECRET LAW
 AND THAT, EXCEPT AS EXPRESSLY AUTHORIZED IN WRITING BY DIVELBISS, LICENSEE MAY NOT USE,
 DISCLOSE OR REPRODUCE OR DISTRIBUTE ANY COPIES OF THE LICENSED SOFTWARE, IN WHOLE OR
 IN PART, NOR AUTHORIZE OR PERMIT OTHERS TO DO SO.

 (c) Licensee further acknowledges that any applications made by Licensee using the Licensed Software, including
 any incorporated into Resulting Products, are derivative works made solely with the authorization of Divelbiss, in
 consideration for which Licensee agrees to provide, upon request from Divelbiss, copies of all such applications to

 Divelbiss and grants to Divelbiss a perpetual, irrevocable, royalty-free license to copy and use such applications
 so long as Divelbiss is not competing with Licensee.

 (d) Licensee shall not, nor will it assist others in attempting to, decompile, reverse engineer or otherwise re-create the
 source code for or functionality of the Licensed Software. Licensee shall not use the Licensed Software for the
 purpose of developing any similar or competing product, or assisting a third party to develop a similar or
 competing product.

 (e) At no expense to Divelbiss, Licensee will take any action, including executing any document, requested by
 Divelbiss in order to secure, perfect or protect the rights of Divelbiss in the Licensed Software or Confidential
 Information (as hereinafter defined).

11. Confidentiality

 Except as expressly provided in this Agreement, Licensee shall not disclose or permit disclosure to any third parties the
 Licensed Software (including object code, source code and documentation) or any other confidential information provided
 by Divelbiss (“Confidential Information”). Further, Licensee will use all reasonable precautions and take all steps
 necessary to prevent any Confidential Information from being acquired, in whole or in part, by any unauthorized party, will
 use Confidential Information solely in furtherance of this Agreement, and will permit access to any Confidential Information
 only by those employees of Licensee with a legitimate “need to know.” In the event that Licensee learns or has reason
 to believe that Confidential Information has been disclosed or is at risk of being disclosed to any unauthorized party,
 Licensee will immediately notify Divelbiss thereof and will cooperate fully with Divelbiss in seeking to protect Divelbiss’s
 rights in the Confidential Information.

12. Term and Termination

 (a) This Agreement shall remain in effect from the date it is accepted until terminated as provided below.

 (b) Divelbiss may terminate this Agreement and all license rights hereunder upon the occurrence of any of the
 following:

 (i) Licensee fails to cure any material breach of this Agreement within thirty (30) days after receiving notice of
 such breach;

 (ii) Licensee becomes insolvent or unable to pay its debts, makes an assignment for the benefit of creditors,
 ceases to be a going concern, files for protection of the bankruptcy laws, becomes the subject of any
 involuntary proceeding under federal bankruptcy laws or has a receiver or trustee appointed to manage its
 assets;

 (iii) Licensee consolidates or merges into or with any other entity or entities or sells or transfers all or substantially
 all of its assets; or

 (iv) Following ninety (90) days written notice of termination to Licensee.

 (c) Licensee may terminate this Agreement and all licenses hereunder in the event that Divelbiss fails to cure any
 material breach of this Agreement within thirty (30) days after receiving notice of such breach.

 (d) Any fees or expenses payable by Licensee to Divelbiss shall not be reduced or otherwise affected by termination
 of this Agreement. In the event of termination of this Agreement for any reason, neither party shall be liable to the
 other on account of loss of prospective profits or anticipated sales, or on account of expenditures, inventories,
 investments, or commitments.

 (e) Upon termination of this Agreement for any reason, Licensee will immediately return to Divelbiss or, upon
 instruction from Divelbiss, destroy all copies of the Licensed Software (including all code, documentation,
 manuals, etc.) and all Confidential Information in its possession, and will certify in writing to Divelbiss that it has
 done so.

 (f) All provisions regarding ownership, confidentiality, proprietary rights, payment of fees and royalties,
 indemnification, disclaimers of warranty and limitations of liability will survive termination of this Agreement.

13. Assignment and Sublicensing

 This Agreement, the license granted hereunder and the Licensed Software may not be assigned, sublicensed or otherwise
 transferred or conveyed by Licensee to any third party without the express, written consent of Divelbiss.

14. Dispute Resolution

 (a) In the event of any dispute arising between the parties related to the subject matter of this Agreement, except
 regarding the payment of fees under Sections 3 or 15 of this Agreement or as provided in Subsection (b) below
 (“Dispute”), the parties agree to attempt to resolve such Dispute according to the procedures set forth below.

 (i) In the event either Divelbiss or Licensee notifies the other party of a Dispute, representatives of each
 party with adequate authority to settle such Dispute will promptly engage in direct negotiations. If
 such representatives are unable to resolve such Dispute within ten (10) business days after commencing
 negotiations, or twenty (20) business days after the initial notice of Dispute, then either party may
 initiate mediation of the Dispute as provided in Subsection (a)(ii) below.

 (ii) In the event either party initiates mediation of the Dispute (by sending a written notice of mediation to
 the other party), then the Dispute shall be subject to mediation in Mt. Vernon, Ohio before a single
 mediator (to be proposed, in the first instance, by the party initiating mediation) who will be reasonably
 familiar with the computer industry and mutually acceptable to the parties. The parties agree to participate
 in such mediation in good faith, through representatives with due authority to settle any such Dispute. If
 such representatives are unable to resolve such Dispute within twenty (20) business days after
 commencing mediation, then each party may pursue whatever further recourse it deems necessary to
 protect its rights under this Agreement.

 (b) Licensee agrees that any violation of this Agreement related to the Licensed Software or Confidential Information,
 specifically including Divelbiss’s proprietary rights therein, is likely to result in irreparable injury to Divelbiss.
 Accordingly, notwithstanding any other provision of this Agreement to the contrary, Licensee agrees that Divelbiss
 shall be entitled to all appropriate relief from any court of competent jurisdiction, whether in the form of injunctive
 relief and/or monetary damages, to protect its proprietary rights in the Licensed Software and Confidential
 Information.

15. Maintenance and Support

 (a) In consideration of the payment of annual maintenance and support fees by or on behalf of Licensee (payable for
 the first year with the license fee, and thereafter annually at least thirty (30) days before the anniversary date of
 this Agreement),

 Divelbiss will provide maintenance and support of the EZ LADDER Toolkit, in the form of (i) such periodic
 corrections, updates and revisions to the EZ LADDER Toolkit as Divelbiss, in its sole discretion, may from time to
 time elect to release, and (ii) responses to inquiries submitted by Licensee by email to Divelbiss at
 sales@divelbiss.com.

 (b) The maintenance and support fee is specified in the applicable Divelbiss price list.

6. General

 (a) This agreement constitutes the entire agreement between the parties relating to the Licensed Software and the
 subject matter hereof, supersedes all other proposals, quotes, understandings or agreements, whether written or
 oral, and cannot be modified except by a writing signed by both Licensee and Divelbiss.

 (b) In the event of any conflict between the terms of this Agreement and any purchase order or similar documentation
 prepared by Licensee in connection with the transactions contemplated herein, this Agreement shall govern and
 take precedence, notwithstanding Divelbiss’s failure to object to any conflicting provisions.

 (c) Notwithstanding anything to the contrary herein, except for payment obligations under Sections 3 or 15, neither
 party shall be liable for any failure of performance beyond its reasonable control.

 (d) Except as otherwise provided, this Agreement will be subject to and construed in accordance with the laws of the
 State of Ohio (U.S.A.) without regard to its conflict of laws provisions. Exclusive venue for any legal action
 between the Parties arising out of or related to this Agreement or the subject matter hereof will be in the state or
 federal courts located or having jurisdiction in Knox County, Ohio (U.S.A.), which the Parties expressly
 acknowledge to have personal jurisdiction over them. The 1980 UN Convention on the International Sale of
 Goods (CISG) will not apply hereto.

 (e) No waiver by either party of a breach of this Agreement shall operate or be construed as a waiver of any
 subsequent breach.

 (f) The invalidity, illegality or unenforceability of any provision of this Agreement shall not affect the remainder of the
 Agreement, and this Agreement shall be construed and reformed without such provision, provided that the
 ability of neither party to obtain substantially the bargained for performance of the other shall have thereby been
 impaired.

 (g) All notices, consents and other communications between the parties shall be in writing and shall be sent by (i) first
 class mail, certified or registered, return receipt requested, postage prepaid, (ii) electronic facsimile transmission,
 (iii) overnight courier service, (iv) telegram or telex or (v) messenger, to the respective addresses that the parties
 may provide.

 (h) Licensee shall be deemed an independent contractor hereunder, and as such, shall not be deemed, nor hold itself
 out to be, an agent or employee of Divelbiss. Under no circumstances shall any of the employees of a party hereto
 be deemed to be employees of the other party for any purpose. This Agreement shall not be construed as
 authority for either party to act for the other party in any agency or other capacity, or to make commitments of any
 kind for the account of or on behalf of the other except to the extent and for the purposes provided herein.

 (i) LICENSEE ACKNOWLEDGES THAT IT HAS READ THIS AGREEMENT, UNDERSTANDS IT, AND AGREES TO
 BE BOUND BY ITS TERMS AND CONDITIONS.

